
Disk Operating System
Instructional and Reference Manual

Apple Computer Inc. ·reserves the right to make improvements in the product
described in this manual at any time and without notice.

DISCLAIMER OF ALL WARRANTIES AND LIABILITY

. Al'PLE COMPUTER INC. MAKES NO WARRANTIES, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL OR WITH RESPECT TO THE SOFTWARE DESCRIBED IN THIS
MANUAL, ITS QUALITY, PERFOBMANCE, MERCHANTABILITY, OR FITNESS FOR ANY
PARTIGULAR PURPOSE. APPLE COMPUTER INC. SOFTWARE IS SOLD OR LICENSED "AS
IS", THE ENTIRE RISK AS TO ITS QUALITY AND PERFOB,MANCE IS.WITH THE BUYER •

.. SHOULD THE PROGRAMS PROVE DEFECTIVE FOLLOWING THEIR PURCHASE, THE BUYER
{AND NOT APPLE COMPUTER INC,, ITS DISTRIBUTOR, OR ITS RETAILER) ASSUMES
THE ENTJ;RE COST OF ALL NECESSARY SERVICING, REPAIR, OR CORRECTION AND ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES. IN NO EVENT WILL APPLE COMPUTER INC.
BE LIABLE FOR DIRECT, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
Rll:SULTING FROM ANY DEFECT IN THE SOFTWARE, EVEN IF APPLE COMPUTEll INC. HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW
THE EXCLUSION. OR LIMITATION OF IMPLIED WARRANTIES OR LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION OR EXCLUSION
MAY NOT APPLY TO YOU.

This manual is copyrighted and contains proprietary information. All
;i:-ights are reserved. This document may not, in whole or part, be copied,
photocopied, reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from .Apple
Computer .Inc.

01979 by APPLE COMPUTER INC.
10260 Bandley Drive
Cupertino, California 95014
(4188) 996-1010

All rights reserved.

Reorder APPLE Product #A2L0012
(030-0011-01)

TABLE OF CONTENTS

vii PREFACE

CHAPTER1
INSTALLATION AND HANDLING
2 Unpacking
2 Connecting the Cable
3 Installing the Controller
5 Installing Multiple Disk Drives
5 Care of the DISK II and Diskettes
6 Inserting and Removing Diskettes

GmlNG STARTED
10 Background
10 Special Keys
11 Booting DOS
12 If Booting Doesn't Work
13 INITializing New Diskettes
15 LOADing and SAVEing with DOS
16 CATALOG
16 What's in a Name?
17 RENAMEing Files
18 DELETEing Files

CHAPTER 2

18 Recovering from Accidental Resets

EXERCISING OPTIONS
22 Drive, Slot, and Volume Options
24 Syntax
24 INIT
25 LOAD, RUN and SAVE
26 DELETE

CHAPTER 3

27 A Scenario: boot, CATALOG, SAVE, RUN and DELETE
28 Moving Between Languages: FP and INT
29 Use of DOS From Within a Program

PLAYING SAFE
34 Creating a Turnkey System
35 LOCK and UNLOCK
35 VERIFY
36 Write-Protecting a Disk

CHAPTER4

37 Protecting Yourself Against Disaster
38 Using the COPY Program

MORE "HOUSEKEEPING"
INFORMATION
42 Debugging: MON and NOMON
43 MAXFILES
44 TRACE
44 Using the UPDATE Program

ii

CHAPTER 5

CHAPTER6
USING SEQUENTIAL FILES
48 Text Files: an Introduction
49 Sequential Files: Some Examples
58 OPENing and CLOSEing Sequential Files
59 WRITEing Sequential Files
64 READing Sequential Files
66 More on Sequential Files: APPEND and POSITION
69 Byte-ing Off More

CHAPTER 7
AUTO APPLE
74 Controlling the Apple via a Text File: EXEC
75 Creating an EXEC File
76 Capturing Programs in a Text File
77 Converting Machine-Language Routines to BASIC
78 MAXFILES and Integer BASIC Programs
78 EXECutive Session

CHAPTER I
USING RANDOM-ACCESS FILES
82 Random-Access Files: How They Work
82 A Specific Record
84 Multiple Records
86 A Demonstration: The RANDOM Program
88 WRITEing and READing Random-Access Files

iii

CHAPTER 9
USING MACHINE LANGUAGE FILES
92 Machine Language Files
92 BSAVE
93 BLOAD
93 BRUN
94 The RWTS Subroutine

CHAPTER10
INPUT, OUTPUT AND CHAINING
100 Selecting I/O Devices: IN#, PR# and Other Stuff
106 Integer BASIC CHAIN
106 Applesoft Chain

APPENDIX A
FILE TYPES USED WITH DOS
COMMANDS
110 By DOS Command
111 By File Type

DOS MESSAGES
114 ONERR GOTO Codes
llS Discussion

APPENDIX I

iv

FORMAT OF DISKE 11 E
INFORMATION

APPEND1xC

124 Overview of the Storage Process
124 WRITEing into a Sequential Text File
126 WRITE-ing into a Random-Access Text File
126 How DOS WRITEs into Text Files: General Procedure
127 Contents of File Sectors
128 The Track/Sector List
129 The Diskette Directory
132 Volume Table of Contents
133 Track Bit Map
135 Track and Sector Allocation Order
136 Retrieving Information from the Disk
136 READing from a Sequential File
137 READing from a Random-Access File

MEMORY USAGE
APPENDIX D

140 Memory Areas Over-Written When Booting DOS
141 Memory Areas Used by DOS and Either BASIC
142 HIMEM Set By Booting DOS

DOS ENTRY POINTS
AND SCHEMATICS
144 DOS Entry Points

APPENDIX E

145 Circuit Schematic: Disk II Interface
146 Circuit Schematic: Disk II Analog Board

v

APPENDIX F
SUMMARY OF DOS COMMANDS
148 Notation
151 File Names
151 Housekeeping Commands
156 Access Commands
158 Sequential Text File Commands
161 Random-Access Text File Commands
163 Machine Language File Commands

APPEND1xG
SUMMARY OF DOS PROCEDURES
166 Booting DOS
166 INITializing a Diskette
166 Recovering from Accidental RESETs
166 Use of DOS from within a Program
167 Creating a Turnkey System
167 Creating and Retrieving Sequential Text Files
169 Adding Data to a Sequential Text File
169 Controlling the Apple via a Sequential Text File
170 Creating and Retrieving Random-Access Text Files
171 Copying a Text File
171 Chaining in Applesoft

174 General Index
178 Program Index
178 Message Index

INDICES

Inside Back Cover: Index to DOS Command Summaries
Index to DOS Procedure Summaries

vi

PREFACE

This manual has two primary functions. The first is to teach you how to
use the DOS (Qisk Qperating ~stem): the Chapters of the manual use
examples to accompany explanations of how the various DOS commands work.
The second function of the manual is to serve as a reference guide to DOS.

The Appendices, Quick Reference Card, and the Indices (on pages 172, 178
and the inside back cover) were planned with this function in mind.

To use an Apple Disk II, you need an Apple II computer with at least 16K
of memory -- but 32K is recommended, since the 16K system allows little
memory space to store programs. For using Apple Disk II with Applesoft
BASIC on the firmware ROM card (Part A2B0009X), your computer still
requires only 16K of memory. For using Apple Disk II with Applesoft on
cassette tape (Part A2T0004) or on diskette, your computer must have at
least 32K of memory.

The Apple Disk II is a "floppy" disk unit which allows you to store and
retrieve information much more quickly and conveniently than you can with
tape. The information is stored and retrieved from a "diskette", a small
(about 5-inch diameter) specially coated plastic disk which is permanently
sealed in a square plastic case.

One of the most important advantages to using Disk II is that information
is stored and retrieved by a name under which it is filed. A program that
catalogs phone numbers might be saved with an instruction such as
SAVE PHONE NUMBERS
and retrieved with an equally simple command. The name PHONE NUMBERS
under which the program is filed is a file ~·

The programs that automatically keep track of files, save and retrieve
information, and do a multitude of other housekeeping tasks are called the
Disk Operating System, usually shortened to "DOS". Some people say
"doss" and others say "dee oh ess". Learning to use DOS and the disk
consists of learning a few special DOS commands described in this manual.
These commands can be used as extensions to either Applesoft or Integer
BASIC or machine language programs.

At some places you'll see the symbol

·~
preceding a paragraph. This symbol indicates an unusual feature to which
you should be alert.

The symbol

Gi
precedes paragraphs describing situations from which BASIC may be unable
to recover. You will lose your program, probably have to re-start DOS,
and may have to re-start BASIC.

vii

*** NOTE ***
This manual applies to DOS version 3.2 only,
and descriptions may not be correct for DOS
versions 3.1 and 3.0. If you do not have DOS
version 3.2, you should get a copy of it from
your dealer before using this manual. The
version number of DOS is shown when you boot
the System Master diskette. DOS version 3.2
is on a floppy diskette, Part 004-0002-03.
The UPDATE program, discussed in Chapter 5,
can be used to convert disks with outdated
versions of DOS to DOS version 3.2.

Down~oaded from www.Apple20nline.com

viii

UNPACKING
Your Disk II system consists of several items. Among these you will find:

1) The disk drive (the main box).
2) A printed-circuit card (the controller card)

that plugs into the Apple II.
3) A flat ribbon cable, already fastened

to the disk drive, for connecting
the disk drive to the controller card.

4) A "SYSTEM MASTER" diskette.
5) A "BASICS" diskette.
6) This manual.

If you have purchased a drive only (for example, as a second drive for your
controller card) your system will not include all of the above items.

Save the packing material in case you wish to transport your disk -- or in
the unlikely event you must return it to your dealer or to the factory for
service.

*** Special Note ***

Before connecting or disconnecting
ANYTHING

on the Disk II or Apple II
TURN OFF THE POWER.

This is a must.

CONNECTING THE CABLE
In use , the disk drive will be connected to the controller card by the
flat, ribbon-like cable. One end of this ribbon cable is already fastened
to the disk drive. If this is your first disk drive, the connector at the
end of the ribbon cable from this drive should be attached to the upper
set of pins on the controller card. This set of controller card pins is
labelled "DRIVE l".

*** Caution ***

If the cable from the disk drive to the controller card is not plugged into
the controller card correctly, considerable physical damage can be done to
the disk drive unit and its electronics. To assure correct assembly, be
sure to plug the ribbon cable into the controller card before installing the
controller card into the computer. Two installation tips follow. First,
don't jam the cable between the connector and the controll_er card. When the
cable is plugged into the cont roller card correctly, the cable should exit
from its connector on the side of the connector that is away from the
controller card, as shown in the photograph. Second, make sure that all the
pins of the controller card's connector go into the matching holes in the

2

ribbon cable's connector. By making the connection before installing the
card, you can actually see that all the pins are going into the holes
correctly.

" Connecting the Cable to the Controller "

If you are installing a second disk drive, you should connect the ribbon
cable from the second drive to the lower set of pins on your controller.
This set of pins is labeled "DRIVE 2". Take the same care attaching this
connector as you did with the first.

If you are updating an earlier version of DOS to sixteen sectors, you will
need to change two proms on your existing controller card. Read Appendix H
to find out how to do this.

INSTAWNG THE CONTROLLER
To i nstall the Disk II controller card, which you have already connected to
the disk drive via the ribbon cable, you will simply plug the controller
card into a socket inside the Apple II, as follows:

1. Turn off the power switch at the back of the Apple II. This is
important to prevent damage to the computer. If the power is on, removal
or insertion of any card could cause permanent damage to both the card and
the Apple II.

2. Remove the cover from the Apple II. This is done by pulling up on the
cover at the rear edge (the edge farthest from the keyboard} until the two
corner fasteners pop apart. Do not continue to lift the rear edge, but
slide the cover backward until it comes free.

3. Inside the Apple II, across the rear of the circuit board, there is a
row of eight long, narrow sockets called "slots". The leftmost one
(looking at the computer from the keyboard end) is slot #~, and the
rightmost one is slot #7. Locate slot #6, one socket to the left of the
rightmost socket. The controller ca rd may be placed in any slot except
slot #~, the leftmost. However, Apple's standard location for the disk
controller card is s lot #6, and most Apple software (and this manual) is
written with that location in mind.

3

4. BE SURE THE POWER IS OFF BEFORE YOU INSERT OR REMOVE ANY CARD FROM THE
COMPUTER. Insert the "fingers" portion of the controller into slot //6.
The "fingers" portion will enter the socket with some friction and will
then seat firmly. Since the fingers make electrical contact, it is a good
idea to keep your fingers from touching them. Before installation, you
may wish to use rubbing alcohol to.clean the fingers on the board (and,
optionally, your own fingers if you're so inclined).

Inserting the Controller Card

5. Adjust the ribbon cable so it lays flat and passes over one of the
areas between the vertical openings in the back of the Apple II case, as
shown in the drawing. When the lid is installed it will clamp down the
cable and act as a strain relief.

Cable Placement

6. Replace the cover of the Apple II; remember to start by sliding the
front edge of the cover into place. Press down on the two rear corners
until they pop into .place.

7. The Disk II controller is installed, and the Apple II may now be
turned on. Place the disk drive in a convenient location, usually
alongside of or on top of your Apple II.

4

INSTALLING MUIJIPLE DISK DRIVES
Each controller card can be used with two disk drives, one attached to the
upper set of pins, labeled "DRIVE l", and the second attached to the lower
set of pins, labeled "DRIVE 2". Your first disk drive should be attached to
the DRIVE 1 pins and the second to DRIVE 2 pins on the card in slot 06. The
third and fourth drives should be attached to the DRIVE 1 and DRIVE 2 pins,
respectively, on a card in slot 05, the fifth and sixth drives attach to the
DRIVE 1 and DRIVE 2 pins on a card in slot 04, and so on.

If you have multiple drives, it is a good idea to label the front of each
drive with its slot and drive number since your programs will refer to the
disks by those nuni>ers.

CARE OF THE DISK II AND DISKETIES
The Disk II drive, unlike the Apple II, is a mechanical device, with motors
and moving parts. Therefore it is somewhat more delicate than the
computer. Rough handling, such as dropping the drive, or having things
drop on it, can cause it to malfunction. The drive should not be placed
beside or on a TV set, since the strong magnetic fields put out by TVs may
cause damage to the magnetic properties of the drive. If in doubt, locate
disk drives at least 2 feet from any TV set.

Each diskette is a small (about 5-inch diameter) plastic disk coated so
that information may be s tored on and erased from its surface. The
coating is similar to the magnetic coating on recording tape. The
diskette i s permanently sealed in a square black pla stic cover which
protects it, helps keep it clean and allows it to spin freely. This
package is never opened.

The term "floppy" comes from the fact that the diskette is flexible. Older
computer information storage devices that worked on similar principles
used rigid disks. While the diskette (and its plastic cover) are somewhat
flexible, actually bending the diskette can damage it. The diskette cover
contains both ·1ubricants and cleaning agents to extend trouble free
operation - - treat covers with respect.

Never let anything touch the brown or gray surface of the diskette itself.
Handle the diskette by the black plastic cover only. When a diskette is
not in use, keep it in the paper pocket that it came in. These pockets
are treated to minimize static build-up which attracts dust. It is best
to store diskettes vertically when they are not in use. Vinyl notebooks
especially made for this purpose are convenient.

Diskettes hold a tremendous amount of information: a single diskette can
hold over 1,146,000 bits of information. An individual bit of
information, therefore, occupies a very small portion of the diskette. An
invisible scratch on the surface of the diskette, or even a fingerprint,
can cause errors. Do not place diskettes on dirty or greasy surfaces; do
not let them collect dust.

5

To write on a diskette label, use a FELT TIP pen. Do not press hard. It
is best not to write on a label attached to a diskette, but to write on
the separate label, then attach it to the diskette.

Keep diskettes away from magnetic fields. This means to keep them away
from electric motors and magnets; they should not be placed on top of
electronic devices such as television sets. They may be temporarily laid
on the Apple II or the Disk II.

Diskettes are sensitive to extremes of temperature. Keep diskettes out of
the sun, and away from other sources of heat that can cause them to warp
and/or lose data. On hot days, car trunks (or dashboards) can be diskette
killers. Diskettes operate satisfactorily up to 125 degrees Fahrenheit
(51.7 Celsius), which is not very hot. The first evidence of heat damage
is a warped or bent black plastic cover.

With reasonable care a diskette will give you an average life of 40 hours
-- which is a lot, when you consider the few seconds it takes to LOAD most
programs. With just a little bit of carelessness, a diskette may give you
no service at all.

No-No's

INSERTING AND REMOVING DISKETTES
Using a disk drive is far quicker and easier than using a cassette
recorder, however some-care is necessary to protect the diskettes. The
drive itself must also be handled with some care. The drive door is
opened by pulling outward on its bottom edge. The diskette is then
slipped into the slot with the label upwards, as shown in the
photograph. The edge of the diskette with the oval cutout in the
diskette's square plastic cover should enter the drive first. The edge
of the diskette with the label should enter the drive last.

A Good
RULE OF THUMB

Hold a diskette with your right thumb over the label:
that pretty much insures the correct orientation

when you put the diskette in the drive.

6

Inserting a Diskette

Push the diskette gently until the diskette is entirely into the drive.
Do not bend the diskette! If it is pushed in too hard, the diskette can
be permanently damaged. Close the drive door by pushing it down again.
The two metal fingers (which can be seen inside the slot when the drive
door is closed) should just clear the diskette as the door closes.

A diskette is removed by opening the drive door and pulling the diskette
carefully out of the drive. The act of opening the disk drive door lifts
the "head" off the disk. If you plan to leave an unused diskette in a
drive for several hours, it's a good idea to open the door so the head
won't rest on the diskette.

S J
NEVER remove a diskette while the drive's "IN USE" light is on. This may
permanently damage the diskette, and is almost sure to destroy the
information on it. In such a case, the diskette can usually be re-used,
but you won't be able to recover the lost information.

7

8

BACKGROUND
Learning to use the disk and its operating system consists of learning a
few special instructions, several of which are straightforward extensions
of familiar BASIC instructions. This manual assumes that you're familiar
with the Apple II, and feel comfortable writing simple BASIC programs.

To learn how to use the Apple II and Integer BASIC, consult the Apple II
BASIC Programming Manual (Apple Product #A2L0005X). To learn how to use
Applesoft BASIC, consult the Applesoft II BASIC Programming Reference
Manual (Apple Product #A2L0006). The Applesoft manual assumes you're
already familiar with the Apple II and simple BASIC programming. If
you're not familiar with either manual, we will wait here while you learn
about the Apple II, before going on to learn about DOS.

*
*
*

Throughout the manual are listings of programs that illustrate how to use
DOS. Most of these programs are in Applesoft; a few are in Integer BASIC.

Sometimes the changes needed to convert an Applesof t program to Integer
BASIC are mentioned; other times, they are not. Consult Appendix M in the
Applesoft manual for details on the differences between programs written
in Integer BASIC and Applesoft BASIC.

A little bit of hands-on experience is worth a lot of reading. Once your
disk drive is hooked up and the computer is turned on, follow each of
these descriptions by actually trying out the procedures on your Apple II.

Put the Apple II into BASIC -- either Integer BASIC or Applesoft. Place
the System Master diskette into the drive. The diskette should be
labelled 004-0002-XX. The last two digits are indicated by X's, since it
doesn't matter what they are. If you have more than one drive, use Drive
1. This section of the manual only deals with one drive and assumes that
you've followed the standard conventions, putting the controller into slot
116.

With the disk drive attached, and the diskette in the drive, and the disk
drive door closed, you will find that the Apple II performs just as it did
without the disk. Nothing is changed. It is as if the disk drive were
not there. And, as far as the Apple II is concerned, the disk drive is
not connected yet: a special command must be given to inform the computer
that the disk drive and the new DOS instructions are available.

®
Even though DOS commands look like·· BASIC commands, they do not always
follow the same rules. For example, multiple DOS commands cannot be put
on one line, separated by commas. The SYNTAX ERROR message results.

SPECIAL KEYS
Sometimes this manual uses the curly brackets and to enclose the
names of special keys which you are supposed to press on the Apple II
keyboard.

10

{RETURN} means you should press the key marked "RETURN". Press the RETURN
key after each instruction.

{RESET} means press the key marked "RESET". If you have an Autostart ROM,
a press of the RESET key will cause the Apple to beep and display a prompt
character. With the old ROM, a press of the RESET key will put you into
the MONITOR program, which uses * as its prompt character.

{ESC} means press the key marked "ESC". "ESC" originally meant "escape",
but nowadays has other uses.

{CTRL} is a bit different.
{which stands for control)
another key. For example,
holding down the CTRL key.
in another way: CTRL-C and

It means you should press the key marked "CTRL"
and continue holding it down while you type
{CTRL}C means type the "C" key while you are

Sometimes use of~the control key is indicated
{CTRL}C both mean the same thing.

*** NOTE ***
Characters typed while holding down the CTRL key

·do not appear on the screen.

BOOTING DOS

The process of adding the DOS commands to the BASIC in your Apple II is
called booting the disk. The disk may be booted from Integer BASIC, from
Applesoft or from the Monitor. There are various ways you can use to boot
DOS. From Integer BASIC or Applesof t, the PR#s and IN#s commands {see
your Applesoft manual) may be used. From the Monitor, "control commands"
using the CTRL key may be used. Once you get DOS booted, it's all the
same DOS: it doesn't matter how you got there.

In the examples below, the lower-case letter s stands for the number of the
Apple II slot in which your disk controller card is located. The standard
location for the controller card is slot #6 {see Chapter 1, Installing the
Controller). After any of the following commands, you must press the
RETURN key.

From Integer BASIC (whose prompt character is >
you can use either of these commands to boot the disk:

You type: PR#s
or: IN#s

Example: PRf/6
Example: INf/6

From Applesoft (whose prompt character ts
you can use either of these commands to hoot the disk:

You type: PR/ls
or: !Nils

Exall\P le : PR 116
Example: !Nf/6

From the Monitor (whose prompt character is *),
you can use either of these commands to boot the disk:

You type: Cs!ll!llG
or: s{CTRL}P

Example: C60!1lG
Example\: 6{CTRL}P

11

In the rest of this manual, ~en you are to re-start the DOS in this manner
we will simply say: ''boot the DOS" or "boot the disk". Both expressions
(very popular among computer users) mean the saine thing. "Boot" is short
for the word "bootstrap" and the term is from the expression "to pull
oneself up by one's bootstraps". In any case, it does not mean to kick the
disk, even if you do feel in such a mood from time to time.

Now try booting DOS from your System Master diskette. Start by putting
your Apple II in BASIC -- either Integer BASIC or Applesoft will do. Be
sure the diskette is properly inserted. Next type
PR/16
and press the RETURN key as usual. From now on, it will be assumed that
you will press the RETURN key after each instruction.

Once you press the RETURN key, the red "IN USE" light will come on, the
disk will make whirring and clacking noises (don't be alarmed -- it's not
getting ready to fly away) and in less than 10 seconds, a message will
appear. The message should be similar to the following:

005 VERSION 3. 3
APPLE II STANDARD

0411.5180
SYSTEM MASTER

If you now try to use BASIC, you will find that most commands still operate
normally and, aside from the message suddenly appearing, the Apple II seems
unchanged. What has happened is this: a few new commands have been
introduced, and a few old ones have new capabilities. Two changes have been
made that are not obvious, however:
1) The HIMEM pointer to the highest memory location you may use

has been reset to accomodate the DOS program.
2) Your Apple II may have lost some of its high-resolution

graphics capabilities, depending on the amount of memory
in your computer.

** Versions of DOS that use 13 sectors can't be booted when the system
expects 16 sector diskettes. (The diskette spins and hiccups, but nothing
comes out.) To run a 13 sector diskette, update it to 16 sectors with the
MUFFIN program. You can also use the BASICS diskette to boot 13 sector
diskettes on your sixteen sector system. See Appendix I to learn how.

IF BOOTING DOESN'T WORK

If you can't successfully boot your System Master diskette, re-read the
manual carefully -- that cures 90% of all problems.

This isn't likely, but if your unit was shipped in a Sherman tank or some
such, the connectors inside the disk drive may have worked a bit loose. If
you are at all squeamish about handling the insides of your drive, your
dealer will be glad to check it out.

If you enjoy getting your fingers into the works, you can turn the computer
off, and disconnect the drive from the controller. Loosening the four
screws on the bottom of the drive allows the mechanism to slip forward out
of the case. Tighten the connectors by pushing them gently onto the
circuit boards.

12

Re~assemble the unit and it will probably now work. If this first aid
doesn't work, see your dealer. Don't make any adjustments.

INITIALIZING NEW DISKETIES
The System Master that comes with this manual is a very special diskette:
it contains programs that allow you to copy an entire diskette, update any
diskette that has an earlier version of DOS, and more. Programs that
demonstrate various capabilities of DOS are also included on the diskette
and discussed in the manual.

Take the System Master diskette from the drive, and replace it with the
other blank diskette supplied with your drive. Now try an experiment.
Get BASIC going, then type
PRf/6
and watch what happens. The red IN USE light comes on, and the disk drive
makes a few clackety noises, then it just keeps whirring softly and quietly
and it doesn't stop. You'll have to press the RESET key to stop it
(normally, this is a BAD idea, but these circumstances aren't normal). It's
a good idea to open the disk drive door before pressing the RESET key, since
that lifts the head of the disk drive off the surface of the diskette.

What happened was this: your Apple II went on a fruitless unending search
for information on a blank diskette (on a clear disk you can seek
forever •••). When a new diskette is manufactured, it contains no
information at all, like a blank tape purchased for a tape recorder. To
operate in the computer, there must be special information placed on the
diske tte: the diskette must be initialized.

If you've been keeping up with the hands-on part of the example, your blank
diskette is in the drive and you just pressed the RESET key. Now take out
the blank diskette, replace it by the System Master diskette, and close
the door of the drive. Get the computer into BASIC and type
PR/16
again. You should again get the message you got before when you booted.
Once more the DOS commands have been added to BASIC.

The INIT command can be used to INITialize a "slave" diskette. Slave
diskettes are memory-size dependent: the size of the system which
initializes the diskette determines the size of the system which can use
the diskette. If a slave diskette is created on a 32K system, then it can
only be used on a system with 32K or more memory. On larger systems, only
32K of memory will be used. After INITializing a slave diskette, you can
use the MASTER CREATE program (see Chapter 5) to tranform your slave
diskette into a "master" diskette whose DOS is self-relocating so that
memory is used efficiently. The MUFFIN program will allow you to transfer
the contents of your 13 sector diskettes to 16 sector diskettes.

The INIT command requires the use of a BASIC program called the "greeting"
program since it greets you: each time you boot the diskette the program
will be run automatically. The greeting program is commonly named "HELLO"
but you could call it "BONJOUR" or "BUENOS DIAS" or whatever you like. It
helps keep life simple to use a standard name for greeting programs as you
INITialize diskettes.

13

Here's a step-by-step guide, to INITializing a slave diskette. We assume
DOS is already booted as described above.

1) Remove the System Master from your disk drive and replace it with
a blank diskette.

2) Type NEW, then type a greeting program. Here is a simple sample of a
greeting program:

5 REM GREETING-1 PROGRAM
10 PRINT "SLAVE DISKETTE CREATED

ON 48K SYSTEM"
20 PRINT "BY AMY DOAKS ON 8 AUGU

ST 1982"
3 0 END

You should supply your own name, system size, the current
date and other information to help you quickly and easily
determine the diskette's history and slave/master status.
You may RUN the program to see if it does what you expect.

3) Once the program is satisfactory, type this instruction:
!NIT HELLO
When you press the RETURN key, the diskette will spin for nearly
a minute, making clacks and little whispery noises every
now and then. The appropriate prompt character (e.g.,] for
Applesoft) will be displayed when INITialization is complete.

4) When the disk quiets down and the IN USE light goes off,
remove the diskette and label it. The label should say
something like
32K SLAVE DISKETTE CREATED 8 AUGUST 1980
so that just by looking at it you know it isn't blank.

Put aside the System Master diskette supplied by Apple Computer. Put it
where it won't be damaged by heat, physical stress (kids? dogs?) or
magnetic objects. And where it won't get lost. It should be treated
especially carefully, since it contains many useful programs.

Once a diskette has been INITialized, it will be referred to as a slave
diskette. To label your slave diskette, you had to take it out of the
drive. Put it back in and try booting it: the message in your PRINT
statements should appear. If you followed the model given above, the
screen should say:

SLAVE DISKETTE Ci<EAT£0 oti .48K S't'STEVi
B'r AMY DOAKS ON 8 AUGUST 19e:2

Since the once-blank diskette now can boot, you know that it has been
INITialized correctly. From this point on you will use the newly
INITialized slave diskette for experimentation. You cannot do some of the
procedures to be demonstrated below on the System Master, because the
diskette is "write protected", as discussed in Chapter 4.

If you have purchased additional blank diskettes, it would be a good idea
·to INITialize a few of them now.

14

LOAD-ING AND SAVE-ING WITH DOS
Boot the system with your initialized diskette. Type
NEW
to make sure no programs are in memory. This will erase your greeting
program (which is LOADed and RUN when you boot DOS) from memory (but not
from the diskette).

Now type this simple program:

5 REM COUNT PROGRAM
10 FOR I == 1 TO 10
20 PRINT L
30 NEXT I
40 END

RUN it once or twice to make sure that it works as you expect. In
Applesoft, when the program is RUN you'll see this:

1 2 3
4 5 6
7 8 9
:10

For reference purposes, call this program ONE TO TEN, since it counts from
one to ten. To store this program on the diskette, type the instruction
SAVE ONE TO TEN
When you complete the command by pressing the RETURN key, the disk will
whirr for a few seconds, and the'program will be saved.

If you had typed
SAVE
without any name, the program would have been saved on cassette tape, as
usual (assuming you had operated the tape recorder as described in the
BASIC Programming Manual).

To prove that the program has been SAVEd on diskette, do the following.
First, type
LIST
then
RUN
to see the program is still in memory and still operates properly. This
demonstrates that using DOS to SAVE a program on a diskette doesn't affect
the program in any way.

Now type
NEW
then
LIST
There will be no program left at all -- it disappeared when you typed NEW.

To really make sure the program is dead, turn off the computer. You can
even take the diskette out and put it (gently) back in again. Turn the
computer back on again, get into BASIC and boot the DOS. Type NEW (which
erases the HELLO program), and then LIST. Nothing there? Right.

15

Now type
LOAD ONE TO TEN
and the disk will whirr for about two seconds. LIST the program: it is
revived. RUN it, and you will find it in perfect health. That is all there
is to SAVEing and LOADing programs from disk: it's just like using the
cassette tape except that a file name is used, and it's faster.

CATALOG

You stored the program ONE TO TEN on your diskette. Actually, you had
already stored another program. To see what programs are stored on a
given disk, type the command
CATALOG
and a list of all the programs on the diskette will appear. Right now your
diskette's catalog should look like this, if your programs were written in
Integer BASIC:

I 11112 HELLO
I 1102 ONE TO TEN

The letter "I" in the left column means that the programs are in Integer
BASIC; before names of Applesoft programs you '11 see an "A". Besides BASIC
program files, there are also other kinds of files that can be stored, and
they will be explained in Chapters 6 through 9. The numbers after the
file-type letter represent the length of the stored program. In this
case, 002 diskette "sectors" were required to store the program. Each
diskette sector can store up to 256 bytes of information. The shortest
possible file, an empty text file (see Chap ter 6); requires 001 sector to
record certain "housekeeping" information. In all, a diskette can store
496 sectors of programs and other files. Lastly, each entry in the
catalog contains the name of the program. See Appendix C for details on
how information is stored on the diskettes .

When a file exceeds 255 sectors, the length reported for that file by
CATALOG starts over again at 000.

~
There is no way to tell from looking at the CATALOG which program is the
greeting program. So it helps if you always give the same name to your
greeting program.

Sometimes you'll have more programs on a diskette than will fit on the TV
screen at one time. CATALOG -will cause the first 18 programs to.be
listed. When you're ready to see the other programs on the diskette,
press any key except the RESET key, CTRL key or the SHIFT keys.

WHAT'S IN A NAME?
File names must be from 1 to 30 characters in length; DOS will truncate
longer file names to 30 characters. A file name must begin with a letter.
Any typeable character except the comma (,) may appear in the name·

16

Here are some legal file names:

SOMNAMBULISTICS
ONE TO TEN
HIRES 34
THE QUALITY OF MERCY: UNSTRAINED

Here a few names that will not work

1 TO 10
HI THERE, BABE
INEPT EXCESS VERBIAGE DISQUALIFIES NAMES

(and reasons why):

(begins with a digit)
(contains a comma)
(will be cut to 30 characters)

Although the name of the last file will be cut to 30 characters when
displayed by CATALOG, you can, if your fingers can take it, type the
entire name when LOADing or RUNning, and all will work correctly.

Every line in the catalog represents a "file". The BASIC program you
stored is an example of a file. The rules given here for file names also
apply to the names of programs.

~
If a control character is accidentally (or even purposefully) typed into a
name, that character will not appea r on the screen when you get a catalog.

For example, if you type {CTRL}T instead of plain "T" in the name
"AGATHA", the catalog listing would appear to be
AG AHA
However, if you tried to LOAD tha t file by typing
LOAD AGAHA
the computer would reply
FILE NOT FOUND
even though the name you typed seemed to be identical to the name in the
catalog. So be careful: don't inadvertently put control characters in
file names. (Although, heh heh, it's a c l ever way to keep you out of my
bank records if all files have secret control characters embedded in
them •••) The File Names section of Appendix F contains tips on how to
find out what control characters are imbedded in file names.

RENAME-ING FILES
For one reason or another, you'll occasionally want to change the name of
a file. Suppose .. you get tired of t yping the file name ONE TO TEN and
decide to call the file COUNT. Just type
RENAME ONE TO TEN, COUNT
and after a moment of whirring you'll again see the BASIC prompt
character. Now type
CATALOG
to verify that all went as planned.

e
The RENAME command does not check to see whether the new name you're
using already exists or not, so it's entirely possible · that you can RENAME
until all files on a diskette have the same name ••• a most undesirable and
conf using situation that is best av oided.

17

DELETE-ING FILES

It is easy to remove files from the diskette. Type
CATALOG
again to see the two files that are on your diskette. Now type
LOAD COUNT
(assuming you changed the file name as shown above) to get that program
into memory. Delete this program from the diskette by the instruction
DELETE COUNT
and test that your deletion has worked by typing
CATALOG

Only the greeting program -- probably called HELLO -- is left. Since the
program COUNT is in memory (that's why you LOADed it), you can place it
back onto the diskette with the familiar command
SAVE COUNT
Take a look at the catalog to see that the program is again on the
diskette.

If you try to DELETE a file that's not on the diskette, you'll receive the
FILE NOT FOUND
message.

RECOVERING FROM ACCIDENTAL RESETS
Suppose you're without the DOS in either Integer BASIC or Applesoft. (If
Applesoft is in firmware, we assume the switch on the card is set for
Applesoft). If you accidentally strike the RESET key, you can recover with
your program intact by using CTRL-C. The DOS also has recovery procedures
that will usually preserve your program and data.

If you are working with an old Monitor ROM and have
then press RESET, you get the Monitor (*) prompt.
the BASIC you left, type
3D0G

already booted DOS, and
To return to DOS and

Remember that's a zero, not the letter O, between the letters D and G.

If recovery to DOS does not work, and the program still LISTs, all is not
lost: save the program on tape (you did remember to keep your tape drive
for just such an emergency, didn't you?). Then at your leisure you can
boot DOS, LOAD the program from tape, and SAVE it on a diskette.

If you accidentally (or intentionally) hit the RESET key while the disk's
red "IN USE" light is on, the information on your diskette may be
clobbered. Problems are most likely to occur if this happens when you're
putting information onto the diskette using a SAVE, BSAVE, or WRITE
command. In the event that it is clobbered, you probably won't be able to
recover your programs from the diskette. If nothing else works, you can
re-initialize the diskette and use it again, but INITializing destroys all
the files on the diskette.

18

If your IN USE light stays on for several minutes but you don't hear the
usual di sk sounds, your system may be "hung". Pressing RESET may be the
only way to turn off the light so you can restart the system.

A diskette can be partially clobbered, so that it will not boot. However,
in such a circumstance, you can sometimes boot another diskette, then LOAD
programs from the partially clobbered diskette and save them on an un­
damaged diskette. Or use the FID program to copy individual files or
programs.

19

20

DRIVE, SLOT AND VOWME OPTIONS
Most DOS commands allow you to specify a number of options, such as which
disk drive you are using, which slot contains the disk controller for that
drive, and a "volume number" for the disk.

The disk drive option allows you to operate with more than one drive.
Each controller has the ability to control either one or two disk drives.
Normally, instructions refer to drive 1. l'his is the default drive
selection: if you don't specify a drive, drive l will be used. If you
wish to specify drive 2, you use the notation D2 separated from the file
name or other disk options by a comma. For example, to initialize a
diskette in drive 2, you could use the instruction
INIT HELLO, D2

After drive 2 has been specified, all further disk commands refer to
drive 2 until drive l is again specified. Drive 2 is now the default
drive. After the above INITialization, the command
CATALOG
will list the files stored on the diskette in drive 2. To specify drive
1, you use the notation Dl separated from the file name by a comma. For
example,
CATALOG, Dl
will show you the contents of the diskette in drive 1, and change the
default drive number back to 1.

If more than two drives are in use, then additional controllers are
required. These are placed in different slots than the first controller
(which is customarily in slot number 6). You can specify slot n (where n
is a digit from l to 7) with the notation Sn separated from the file name
or other disk options by a comma. For example, to initialize a diskette
in drive l attached to a controller in slot 5, you would use the
instruction
INIT HELLO, SS, Dl
The file name must come first, but order of the options is not important.

The default slot number is the one you used when booting the DOS. Once a
different slot number has been specified, it becomes the default slot
number until it is explicitly changed.

~;
After using a DOS command with a Slot parameter naming a slot that doesn't
contain a disk controller, you get an
I/O ERROR
message, and all appears to be fine. But DOS now thinks the default slot
number is the bad slot number, and that the disk that isn't connected to
that slot is still running. Eveil"if the next DOS command specifies the
right slot, it waits in limbo forever for the non-existent disk to
stop running the last command. If you have no program in memory that you
care to save, simply re-boot DOS. To recover with your program intact, do
this:
1) Reset the default slot by typing

CATALOG, Ss
where s is the correct slot number.

2) When the system hangs, press the RESET key.

22

3) Type
3D0G
and all should be fine again.

~
DOS must be booted from a diskette in Drive _!not Drive 2.

The volume number option can be used to protect diskettes from being
accidentally written over. For example, suppose your have a
diskette-based inventory system, where each month's records is on a
different diskette with a unique volume number. Then when you go to enter
information for the month of January, you must be sure to specify the
correct volume number. Otherwise, the information won't be written to the
diskette and you'll get a
VOLUME MISMATCH
message.

A "volume number" may be assigned to a diskette when it is INITialized,
using the notation Vn separated from the file name or other disk options
by a comma. For instance, to initialize a diskette using the name "START
UP" for the greeting program (the program that is run each time the
diskette is booted), where the diskette is in drive 2 of a controller in
slot S, assigning the diskette a volume number of 128, you would use the
command
INIT START UP, D2, SS, Vl28

~
The volume number of a diskette may not be changed without re-INITializing
the diskette.

The drive number, slot number and volume number options may appear in any
order. The above command is equivalent to
INIT START UP, Vl28, SS, D2
and to
INIT START UP, SS, Vl28, D2
and so on.

The volume number of a diskette must be an integer from 1 through 2S4. If
no volume number is specified with INIT, a default volume number of 2S4 is
assigned to the diskette.

~· ~
The command
INIT HELLO, V0
does not give any message, but assigns the diskette the default volume
number 2S4 .

All DOS commands can specify the volume number, if you wish DOS to check
that the volume number on the diskette agrees with the V option. If you
do not specify any volume number, or if you specify volume zero, or if
you type "V" without a number, DOS will ignore the diskette's volume
number. If you accidentally specify an incorrect volume number, the
system will reject it with the message
VOLUME MISMATCH

23

Volume mismatch errors cannot occur when you ask to see the CATALOG. In
case you wish to know the volume number of a diskette, it is given at the
head of the CATALOG listing.

Additional discussion of options is found where each command is
introduced. Also, the information is concisely summarized for each
command in the Command Summary Appendix and on the Quick Reference Card
accompanying this manual. The following section explains how to interpret
these concise summaries.

SYNTAX
Syntax refers to the structure of a computer command, the order and
correct form of the command's various parts. A simple notation is used to
describe the syntax of each DOS command. Items in brackets ([and)) are
optional; optional parts of a DOS command may be specified in any order.
CAPITAL letters and commas must be typed as shown; lower case letters
stand for items you must supply. In specifying the syntax for DOS
commands,

f stands for a file name
d stands for drive number -- either 1 or 2.
s stands for slot number -- 1 through 7.
v stands for volume number -- 1 through 254, usually.

A diskette's volume number may not be 0. Specifying a
volume number of 0 in a disk command is a "wild card" that
tells DOS to ignore the volume number on the diskette.

Additional abbreviations used in this manual are summarized at the start
of the Command Summary Appendix.

Any numerical constant (the drive number, volume number, etc.) in a DOS
command can be expressed in hexadecimal notation by preceding the hex
digits with a dollar sign. If you don't know what hexadecimal notation
is, ignore the preceding statement -- you need't understand hex notation
to understand this manual.

INIT
The syntax for the HUT command is
INIT f [, Vv) [,Ss) [,Dd)
where the brackets indicate options which may or may not be included. The
example
INIT HELLO, Vl7, D2
can be interpreted as follows.

The command name "INIT" is in upper case, and must be typed exactly as
shown. The lower case "f", for file name is replaced by the legitimate
file name "HELLO". Next the optional volume number is indicated: first
comes a comma, then the upper case "V". The "v" for volume number was
arbitrarily replaced by 17 for this example. The brackets around ",Ss"
indicate that specifying the slot number is optional for the INIT command:

24

in this example it's omitted so DOS will use the default slot number. The
drive option is included: the comma and upper case "D" must be as shown;
the lower case "d" is replaced by 2 in this example.

LOAD, RUN AND SAVE
LOADing, RUNning and SAVEing programs on the disk is similar to the
corresponding operations using the cassette (except that programs are
referenced by file name). Everything goes at least ten times faster, and
you never need to press buttons to play, record or rewind. It is all
automatic. There are many additional abilities that the disk brings as
well, such as the catalog of programs and the automatic running of
programs without user intervention. Saving data (on text files -- see
Chapter 6) is also very easy. The FID program described in Appendix J
offers you some additional ways to manipulate files.

It's a good idea to hang on to your cassette tape system for trading
programs and as back-up storage for vital programs and data (although
experience shows that disk storage is even more reliable than cassette
storage of programs and data).

If you have a program in BASIC, and you wish to call it HENRY, then the
command
SAVE HENRY
will save it on the diskette. If you have mre than one drive, HENRY
normally would be saved on the drive from which you booted DOS (the default
drive, unless you specified a different drive after booting). You can
specify drive number, volume number and slot number as with the INIT
command. For example, to SAVE a file called AGATHA on drive 1 of the
controller in slot 2, where the volume number of the diskette is 214, you
could use the command
SAVE AGATHA, Dl, S2, V214
As before, the three options can be put in any order. If you had omitted
the volume number option, AGATHA would have been saved just the same, bless
her, but DOS would not have checked that the diskette was volume 214.

Program names are file names, and must follow the file name rules: they may
be up to 30 characters long, and must start with a letter. They may
include any characters you can type except commas or control characters.
Here are some valid names for files:
CHECKBOOK
THE QUALITY OF MERCY
HIRES34
NOW: HEAR THIS!

To LOAD a program named AGATHA, use the command
LOAD AGATHA
and the program of that name, if there is one in the catalog, will be
loaded. To test if AGATHA is loaded, see if she can walk a straight line.

If you want AGATHA to RUN after she's LOADed (poor thing) yoa can, of
course, use the commands
LOAD AGATHA

25

then
RUN
But there's a way to do it in just one step:
RUN AGATHA
is a DOS command that first LOADs the specified file, then RUNs it.

Here's the syntax for the SAVE and LOAD and RUN commands:
SAVE f [,Ss] [,Dd) [,Vv]
LOAD f [,Ss) [,Dd) [,Vv]

RUN f [,Ss] [,Dd) [, Vv)

Examples follow:
SAVE OUR HAPPY HOME, Dl, S7
LOAD UP
RUN AMOK, S7

If, when you try to SAVE a program, you get a SYNTAX ERROR
either you have made a typing error, or DOS isn't booted.
re-typing the command. If DOS was originally booted, use
3D(,JG

message,
First, try

to try to recover. If DOS isn't booted -- DON'T BOOT IT. Booting DOS
will erase any program in memory. First, save the program on tape, using
the usual cassette
SAVE
command. Now boot DOS. Next, use the usual cassette
LOAD
command, to bring the program back into your APPLE II's memory from the
tape. Now you will be able to SAVE it on disk.

If a diskette is bad (perhaps someone tried to staple it into a notebook),
or if the diskette is not initialized, or if there is no diskette in the
drive, or if the door is open, the message
I/O ERROR
(I/O stands for Input or Output) will appear when you try to SAVE or LOAD
using DOS. Check all the items listed, and correct the problem. You
don't need to re-boot DOS. Try again.

If you use the command
LOAD HENRY
and HENRY is not the name of a program on the diskette in the drive, then
you get this message
FILE NOT FOUND
Look at the diskette's cataloz to find the program's exact file name. All
characters and spaces must be typed exactly as they appear in the file
name shown in the catalog.

DEl.ETE
To eliminate any file that you would rather not have on your diskette, the
command
DELETE
can be used. The syntax is
DELETE f [,Ss] [,Dd) [,Vv)

26

For example, the command
DELETE EXCESS, V34, D2, Sl
deletes a file named EXCESS from a diskette with volume number 34, which is
placed in drive 2 of the controller in slot 1. Sectors on a diskette are
"set free" only when a file is DELETEd.

A SCENARIO: BOOT, SAVE, RUN, CATALOG AND DELETE
Suppose you're running Integer BASIC and the System Master diskette is in
your disk drive. Here's a dialog as it might appear on the screen of your
APPLE II. The parts you type are underlined, although they do not appear
that way on the TV screen. First type
>PR/16
to clear the screen. You'll see the following:

DOS VERSION 3. 3
APPLE I I STANDAR[>
>CATALOG
DISK VOLUME 254

*H 006 HELLO
*I 018 ANIMALS
*1 003 APPLE PROMS
*I 0l.<6 APPLE SOFT
*I 026 APPLEVISION
*I 017 BIORH'T'THM
*B 0:10 BOOTE
*H 006 BRIAN,S THEME
*B 130:5 CHAIN
*I 3'39 COLOR DEMO
*A 009 COLC!f.<~ DEMOSl)FT

*I 009 G(tP'r'

*B e.tJs COPY_ fJB .. J0

*A 009 COPYH
*H 0:1.0 E)·;Ec DEf'tC1

*B 0"20 FID
*B 05€1 FPBfiSIG

*B 050 INTBASIC
*H 028 LITTLE BRICK ou-·
*H 00:-::~ MAKE TE)ff
*B 009 MRSfE.R CREAIE
*ti @Z? MUl+IN
*A 051 PHONE LIST

*A 010 RANDOM
*A 013 RENUMBER

04/15/80
SYSTEM MASTER

*A 039 RENIJMBE~'. INSTRUCTIONS
*A 003 RETRIEVE TEXT

)10 PRINT "JABBERWOCK"
:>~
:,SAVE DEMO
l•RITE PROTECTED

>CATALOG
DISK VOLUME 254

I •302 HELLO
I 002 COU~<T

>SAVE DEMO

27

[At this point, you would insert the
Slave diskette you INITialized earlier,
since it is not write protected.]

)CATALOG
DISK VOLUME 254

I 002 HELLO
I 002 COUNT
I 002 DEMO

>NE!·J
>RUN
*** NO END ERR
>RUN DEMO
JABBERWOCK
>DELETE DEMO
>CATALOG
DISK VOLUME 254

I 002 HELLO
I 002 COUNT

MOVING BETWEEN LANGUAGES: FP AND INT
Suppose you've been using Integer BASIC, and you decide to write a program
in APPLESOFT, or to use the computer as a calculator with floating point
numbers (numbers with decimal points). To invoke APPLESOFT without
clobbering DOS, type
FP
(that's all there is to it) and in a few seconds APPLESOFT will be up and
running. The FP stands for "Floating Point", of course. (If for some
reason Applesoft isn't available -- it's not in firmware or on the
diskette that's in use -- then the mess age
LANGUAGE NOT AVAILABLE
will be displayed.) The syntax for the command is
FP [,Ss] [,Dd]
where the optional Slot and Drive parameters allow to to specify the drive
containing Applesoft on a diskette.

If you've been using APPLESOFT and DOS, you can type
INT
(for "Integer BASIC") to return to Integer BASIC with DOS intact. The
suntax for this command is simply
INT
without any parameters. You'll generate a
SYNTAX ERROR
message if you try to use the D or S parameters with INT.

~
If you type
INT
while in Integer BASIC, you will lose any program in memory. Similarly,
if you type
FP
while in Applesoft, you'll lose any program in memory.

When you switch from Integer BASIC to Applesoft or vice versa, you'll lose
any program you happen to have in memory.

28

In addition to moving back and forth between the Apple's BASICs, you may
wish to enter the Monitor and be able to use DOS commands. To do so from
either Applesoft or Integer BASIC, type
CALL -151
and you should get the Monitor prompt character, * . To return to
whichever BASIC you started from with your program and DOS intact, type
3D0G

(~)
·~
From the Monitor, you ma:· also type
INT
to return to Integer BASIC, or
FP
to return to Applesoft; in either case, DOS will still work but !!_!!Y

program in memory will have disappeared.

~·
~·
If you get a
PROGRAM TOO LARGE
message when trying to execute an
FP
command, type
INT
first, to reset the system. Then type
FP

9
Even though your diskette contains the Integer BASIC program named
APPLESOFT, do not .!YP.§.
RUN APPLESOFT
If you do, Applesoft will seem to be
say, and try to re-enter Applesoft.
Integer BASIC (because APPLESOFT was
be in trouble.

running fine until you press RESET,
Then, since the DOS thinks you are in
an Integer BASIC program), you will

To move the APPLESOFT program from one diskette to another, simply
LOAD APPLESOFT
from whatever diskette it's on, then place the diskette you wish to
contain Applesoft in the drive and type
SAVE APPLESOFT

USE OF DOS FROM WITHIN A PROGRAM
Very often it's useful to be able to execute a DOS command from within a
BASIC program. For example, you may wish your greeting program on a disk
to print out the contents of the disk by doing a CATALOG command. Many
DOS commands can be executed from inside a BASIC program. This is done by
PRINTing a string that consists of a CTRl-D followed by the command.

Here is an Applesoft program that, if used as a greeting program, will
cause the information in the PRINT statements in lines 20 and 30 to appear
on the screen, followed by a list of files in the CATALOG.

29

5 ~:EM GF.:EET I NG PROGRAM
10 D$ = CHR$ (4) : REM

IS CTRL -D

CHR$ (4)

20 PRINT " SLAVE DISKETTE CF.:EATED
ON 32K SYSTEM"

30 PR I NT "B'-.' A!'W DOAKS ON B AUGU
ST :1980°

40 PRINT D$; "CATALOG"
50 END

The recommended way to do this in Applesoft is illustrated in the above
program. First the string D$, consisting only of a CTRL-D, is created
using the CHR$ function in the first line of the program. Later it can be
used as in line 40
40 PRINT D$; "CATALOG"
Note the semi-colon after the D$ and the quotation marks around the DOS
command. The semi-colon is optional in Applesoft PRINT statements, so if
a program has many DOS commands in PRINT statements, you may find it saves
typing time and memory space to simply omit them, and use the form
40 PRINT D$"CATALOG"

In Applesoft, you can use the CHR$ function to specify CTRL-D
10 D$=CHR$(4): REM CTRL-D
But you need to recall that the ASCII code for CTRL-D is 4, so a REMark
may be useful. (The CHR$ function is not available in Integer BASIC.)

In either Integer BASIC or Applesoft you may define CTRL-D by
typing the characters
D$="
then typing the letter D while holding down the CTRL key, and then typing
the quotation mark, ". Note that the CTRL-D does not print on your
TV screen. The final command will appear as
D$=""
Since control characters do not print, it's often a good idea to follow
with a REMark to remind you of what actually is in the string. Here's the
above program written in Integer BASIC:

1€:1 D$="": REN THERE IS AN I NVISI BL
E CTRL-D BEHJEEN THE 1JUOTES

20 PRINT "SLAVE DISKETTE CREATED ON
32K SYSTEM 11

30 PRINT "BY AM'T' DOAKS ON 8 AUGUST
1980"

40 PRINT D$_; "CATALOG"
50 END

Only one DOS command may be used in a PRINT statement. The PRINT
statement must begin with the CTRL-D and end with the DOS command.

~
Using the right-arrow to copy a BASIC statement containing an invisible
control character will erase the control character.

30

~ ~
In DOS commands executed by a program, the D$ must be preceded by a RETURN
or it will be ignored. RUNning this program

5 REM TESTCATALOG PROGRAM

10 1)$ = REM THERE IS AN INV

ISIBLE CTRL-D BETl-JEEN THE QU

OTES

20 PRINT "TEST";

30 PRINT !)$_; "CATALOG"

40 END

will cause
TESTCATALOG
to be displayed, since the semi-colon suppresses the RETURN at the end of
the PRINT command in line 20 . To correct this, and cause the DOS command
CATALOG to be executed when the program is RUN, just delete the semi-colon
(;) from the end of line 20.

These DOS commands should only be used within programs in a PRINT
statement beginning with a CTRL-D:

OPEN
APPEND
READ
WRITE
POSITION

These DOS commands may be used in immediate-execution mode, and also from
within a program using a PRINT command with CTRL-D:

CATALOG BSAVE
SAVE BLOAD
LOAD
RUN
DELETE
RENAME
LOCK and UNLOCK
MON and NOMON

~

BRUN
EXEC
CLOSE
CHAIN
PR/I
IN/I

The DOS command MAXFILES may be used as described above in an Applesoft
program, but it must be used in a special way from an Integer BASIC
program, as discussed in the section about the EXEC command in Chapter 7.

-The DOS command INIT should be used only in immediate-execution mode
(dire consequences may result if you ignore this admonition).

31

32

Two ways of protecting you and/or your diskettes against disaster have
already been mentioned. Chapter 3 mentions using the Volume option to
ensure that you place information on the desired diskette. The use of
control characters in file names can also be used as a way of protecting
yourself (see Chapter 2, "What's in a Name?" and also Appendix F, "File
Names"). If what appears in the CATALOG as
MY BANK ACCOUNT
in fact has your initials placed as control characters at some point(s) in
the name, then it's unlikely that anyone else can access the file.

This chapter mentions a variety of ways of ?rotecting
diskettes against various undesirable events. You'll
more of the techniques useful at one time or another.
making a special purpose "turnkey" system.

CREATING A TURNKEY SYSTEM

you and your
probably find one or
First, consider

Suppose a doctor wants to do the office accounting on an APPLE II.
Ideally, the office staff should be able to simply turn on the APPLE II,
type
{RESET} 6{CTRL}P {RETURN}
and immediately be in the midst of the doctor's accounting program. Since
the accounting program would (hopefully) communicate with the user in
ordinary English, the staff wouldn't need to know BASIC or anything else
about the APPLE II. The computer would become an accounting system, its
internal characteristics unimportant since all the staff needs to know is
how to use the accounting program.

This is the essence of a "turnkey" system: from the user's point of view
the computer is a device that does only a particular task, and getting the
system started is as simple as turning a key in a lock. In this case, the
"key" is simply turning on the Apple's power switch and pressing five keys
on the keyboard. It does not require computer expertise to be able to do
that.

You can use the diskette's "greeting program," named when you INITialized
the diskette, to turn your APPLE II into a turnkey system. Let's say that
you wanted the computer to run the COLOR DEMO program (provided on the
System Master diskette) every time you booted Disk II. Here's how:

1) INITialize a blank diskette, as described in Chapter 2.

2) place the System Master diskette in your drive and type
RUN COLOR DEMO
Once you're satisfied that the program RUNs correctly, type
{CTRL}C
to stop the program and return to BASIC.

3) Put your newly INITialized diskette into your drive. We'll
assume that you called your "greeting" program HELLO when
you INITialized the diskette.

4) The program COLOR DEMO is now in memory. When you type
SAVE HELLO
DOS will erase your original greeting program named

34

HELLO and save the COLOR DEMO program under the HELLO
file name. The COLOR DEMO program is now the greeting
program on your diskette.

To check that all works as expected, boot the disk.
You should get the same program that you used in step 2).

You've just created a turnkey system: whenever that diskette is booted, it
will automatically LOAD the COLOR DEMO program and RUN it.

LOCK AND UNLOCK
Sometimes you'll want to prevent a particular program from accidentally
being erased from a diskette: the LOCK command will do this for you.

Example:
LOCK NESS, D2

The CATALOG of this diskette's contents will now show an asterisk (*)
next to the entry for NESS.

If you decide you no longer wish to keep the file LOCKed, the UNLOCK
command will (surprise!) unlock the file.

Example:
UNLOCK NESS

The syntax for the commands is
LOCK f [,Ss] [,Dd] [, Vv]

UNLOCK f [,Ss] [,Dd] [, Vv]
The interpretation of the notation is discussed in the Syntax section of
Chapter 3.

If you try to DELETE or RENAME a file that's LOCKed you'll receive the
message
FILE LOCKED
You'll also see this message if you try to SAVE a file using the name of a
LOCKed file (if the file you're trying to SAVE is in the same language as
the LOCKed file).

~
If you try to SAVE a file using the name of a LOCKed file in a different
language, then you'll receive the message
FILE TYPE MISMATCH
Try again, using a different file name.

VERIFY
Occasionally information may not be recorded correctly on a diskette.
This may happen if the diskette is scratched or dirty, for example. The
VERIFY command reports a file which may be damaged or written incorrectly.

35

The syntax is the usual one for DOS commands:
VERIFY f [,Ss] [,Dd] [,Vv]
Examples of the way to use the command follow:
VERIFY SAM
VERIFY FINANCE-8,D2,V22

VERIFY checks to see that information in the specified file is
self-consistent. If it is, you see no message: the prompt character for
the language you're using is simply printed:
> for Integer BASIC
] for Applesoft
* for the Monitor.
However, VERIFY doesn't check to see whether or not a program is
clobbered. If you SAVEd a program that was messed up somehow, it will
still be messed up on the diskette, and it will still VERIFY.

If the VERIFY command finds an error, the
I/O ERROR
message is displayed.

If you try to VERIFY a file that isn't on the disk, the message
FILE NOT FOUND
is presented.

You can use VERIFY from Integer BASIC, Applesoft, or the Monitor. From
these languages you may VERIFY any type of file, including text files (see
Chapters 6, 7 and 8) and machine language programs (see Chapter 9).

WRITE-PROTECTING A DISK
The LOCK command allows you to protect a particular file. But sometimes
you will want to be sure that all files on a certain diskette are not
accidentally written over, andthus lost. To "write-protect" a diskette,
you merely need to cover up the squarish write-protect cutout in the side
of the disk. Stick-on adhesive labels are supplied for this purpose when
you purchase diskettes but, in a pinch, any piece of sturdy tape will do.
Note that the System Master diskette does not have a write-protect cutout:
it is permanently write-protected.

36

If you decide you want to re-use a write-protected diskette, simply remove
the label (often called a "tab") that covers the write-protect cutout.

Some programs cannot be used with a write-protected diskette. An example
of such a program is ANIMALS, one of the demonstration programs of the
System Master disk. Put your System Master in your drive, and boot DOS if
you need to. Now type
LOAD ANIMALS
which will put the program into memory. Now type
RUN
and the message
WRITE PROTECTED
STOPPED AT 1040
will be displayed. ANIMALS won't RUN on a write-protected diskette
because it saves information on the diskette. each time you play the game.
When you RUN the program, the diskette in the drive must not be
write-protected, else the information can't be written on~e diskette.

Now ANIMALS is in memory, but you can't RUN it with the System Master
diskette. Put an initialized diskette, one that is not write-protected,
in the drive. Next type
RUN
and now you can play ANIMALS, a game that will "remember" what you "teach"
it by saving the information on the diskette. When you're through
playing, type
SAVE ANIMALS
so that you'll have the game on a diskette that's not write-protected.

If you type
CATALOG
you should see that you have not only a copy of ANIMALS on the diskette,
but also a new file called ANIMALSFILE that was created by the program
ANIMALS.

PROTECTING YOURSELF AGAINST DISASTER
Floppy disks are sturdy and reliable compared to some other ways of
storing computer programs -- for example, on the backs of old envelopes.
But it's still possible to lose or destroy all information on a diskette.
A diskette may get scratched or damaged by heat; it may get lost, or a dog
may chew it; someone may decide to use it as a frisbee at the beach; if a
diskette isn't write-protected, it may accidentally get written over. And
a diskette will eventually wear out -- a lifetime of 40 working hours is
about average.

** Moral **
Keep more than one copy of a program around if you don't want to lose it.
In computerese, "back up" any valuable program.

If you are in the midst of writing or modifying a program, one way to back
up the program is to keep copies of earlier versions. Then if the current
version is lost you can fall back to the next-most-recent version, and
hopefully not lose too much programming time. One good way to do this is

37

to end each file name with a number which changes from version to version.
For example, suppose you start to write a program called FINANCE. The
first time you save the program, call it FINANCE-I. Next time you work on
the program, save it under the name FINANCE-2; the third time, it becomes
FINANCE-3, and so on. You'll wind up with a whole collection of FINANCE
programs, with the largest version number representing the most recent
version of the program.

" It's a good idea to SAVE a developing program periodically (with a new
version number). If you do this every 15 or 20 minutes, an unexpected
power failure or other disaster will not erase all your work. You can,
of course, immediately continue working after SAVEing the current state of
the program -- just be sure to assign a new version number for the next
SAVE. If the diskette starts filling up, DELETE some of the earlier
versions. But it's a good idea to keep several versions around, in case
something calamitous happens to the current version. Or you may just
happen to want an earlier version -- not all revisions are improvements.

The phrase "backing up" is also used to describe keeping multiple copies
of programs on separate diskettes. There are two approaches to backing up
in this fashion. The first method works with only one drive: simply SAVE
the program on one diskette, remove that diskette from the drive, insert
another diskette and SAVE the program again.

The second approach involves duplicating all the information from one
diskette onto a second diskette; this works only if you have more than one
disk drive. This approach is discussed in the next section.

USING THE COPY PROGRAM
Those of you with one disk drive will have to LOAD, then SAVE, programs
one by one onto the diskettes you use for back-up copies of programs.
Those of you with two drives can use the COPY program, on the System
Master diskette, to copy the entire contents of your current programming
diskette onto your back-up diskette. The COPY program requires that both
disk drives must be connected to the same disk controller card, to prevent
overstraining the power supply.

In the COPY program, the diskette from which copying is done is called
the "original." The entire contents of the source diskette will be
copied onto a "duplicate" diskette. The "duplicate" diskette does not
have to be INITialized before being copied onto. In fact, any previous
information that was on the "duplicate" diskette will be erased.

Before copying the "original" diskette, it's a good idea to write-protect
it. Then you can't accidentally erase its contents, even if you put it
into the wrong drive.

As default values, the program assumes that the "original" diskette will
be placed in the currently selected drive (the drive from which you ran
COPY), connected to the controller card in the currently selected slot.
To use the default slot or drive number for the "original" diskette, just
press the RETURN key when the program expects you to type a number. If
either default is wrong for the "original" diskette in your system, you
must type the correct number when it's requested by the program.

38

When you have specified the slot and drive numbers f or the "original"
diskette, the COPY program tells you where the "duplicate" diskette must
be placed. It will go in the remaining drive controlled from the same
slot which you specified for the "original".

Here's an example of using the COPY program with the default slot and
drive numbers. It assumes your two disk drives are connected to a disk
controller card in slot #6.

1) Place the System Master diskette in drive 1. Type
RUN COPY
and after the usual whirring you should see

APPLE DISKETTE [;UPLICATION PROGRAM

PLEASE I NSERT OR I GI NAL .

ORIGINAL SLOT: DEFAULT = 6

2) Remove the System Master diskette from drive 1 and then insert the
original diskette, from which you wish to copy, into drive 1
(did you remember to write-protect your original?).

3) Now press the RETURN key to indicate you want to use the default
slot number, slot #6 in our example, for the original diskette.
Next you'll see

DF:IVE · DEFAULT = i

and again press the RETURN key to indicate you want the default
drive number, drive 1 in our example, for the original diskette.

4) Now you will see

APPLE DISKETTE DUPL I CRT r ON PROGl<:Fm

PL EASE INSERT Of.<' IGHJAL

ORI GINAL SLOT: 6

DRIVE : 1

DUPLICATE SLOT: 6

DF.:I VE : 2

ORIGI NAL IN SLOT 6
DRIVE 1

DUPLI CATE IN SLOT 6
DR IVE 2

INSERT DUPLICATE THEN
PRESS ... RETURN / KE'-r' TO BEGIN COP'T' - - -

39

Insert the "duplicate" diskette, onto which you wish to place the
back-up copy, into the drive specified for it: drive 2, in this
example. To stop the program at any response, use the traditional
CTRL-C

5) Finally, to begin copying, press the RETURN key.

If the message

****** UNABLE TO ~~i;;: I TE ******
occurs when you try to copy a diskette, there is no diskette in the
"duplicate" disk drive. The message

***** DUPLICATE l>WITE PROTECTED *****
indicates a problem with the "duplicate" diskette or the drive containing
it. If the diskette has a tab over its write-protect notch, no
information can be put onto the diskette until the tab is removed.

In other situations, DOS will report an
I/O ERROR
if a diskette is inserted improperly or if the drive door is left open,
but the COPY program will tell you (incorrectly) that the diskette is
write-protected.

If you do not have a second disk drive connected, you will be given the
incorrect message that the "duplicate" is write-protected.

The message

indicates a problem with the "original" diskette or the drive containing
it. Perhaps the diskette has been clobbered, or perhaps there's no
diskette in the drive.

When the program asks

DO 'T'OU WISH TO MAKE ANOTHER COPY?

answer with Y for YES, or N for NO, and press the RETURN key. Do not
type more than one character before pressing RETURN.

If you try to use a printer with the COPY program, you'll find weird
displays both on the TV screen and on the printer.

40

DEBUGGING: MON AND NOMON
The process of trying to get a program to run the way you want it to is
called "debugging;" program errors are often referred to as "bugs". All
disk commands and all information sent between the computer and the disk
are normally not displayed on the screen. But when you're debugging,
monitoring this information can help you track down problems.

The MON command allows you to MONitor a variety of information. To turn
various parts of the display off again, use the NOMON (NO MONitor)
command.

Three different parameters that may be used in these commands:
C stands for _f.ommands to the disk (such as OPEN, READ, etc)
I stands for Input from the disk (when READing a file)
0 stands for Qutput to the disk (when WRITEing a file).
These parameters are used only with the NOMON and MON commands.
NOMON C,I,O is in effect: no monitoring is taking place.

The syntax for the commands is
MON [CJ [,IJ [,OJ

NOMON [CJ [, IJ [,OJ

Usually

At least one of the three parameters must be present with the NOMON and
MON commands, else the command will be ignored. The parameters may appear
in any order and, as usual, must be ~eparated by commas.

There are 7 different ways in which the MON command may be used:
command what it monitors
MON C Commands to the disk
MON I
MON 0
MON I,O
MON C,I
MON C,O
MON C,I,O

Input from the disk
Output to the disk
Input from and Output to the disk
Commands to and Input from the disk
Commands to and Output to the disk
Commands to, Input from, and Output to the disk

To illustrate how the command works, a sample program called TEST MON is
included on the System Master diskette. To try out the program, place the
System Master in your drive and type
LOAD TEST MON
then SAVE the program on a diskette that's not write-protected. Now RUN
the program. A list of options will be presented to you. Each time you
select an option the program will put material into a disk file and also
retrieve material from a disk file. (Lines 100 through 180 create a text
file SAMPLE containing 3 numpers and 2 strings; lines 200 through 270
retrieve the file SAMPLE.) Try out all the options: notice what kind of
information is displayed for each possible combination of parameters.

*** NOTE ***
A MON command remains in effect until a

NOMON, INT, or FP (firmware only) command is encountered
or

until you boot the system
or

do a restart (3D0G).

42

A neat trick: you can issue a MON command and later cancel it without
affecting the screen format -- even the NOMON does not show on the screen.

Suppose you execute a UON command, say
MON C, I, 0
To cancel the command without having it print on the screen, include
PRINT D$; "NOMON C,I,O": VTAB PEEK(37): CALL -868
where D$, as usual, contains CTRL-D.

MAXFILES
DOS allows up to 16 files to be active (in use) at one time. DOS deals
with several types of files in addition to the BASIC program files
discussed so far. See Chapter 6 for a discussion of sequential text
files, Chapter 8 for random-access text files, and Chapter 9 for the DOS
commands used with binary (machine language) files.

The MAXFILES command specifies how many active files are permitted. When
you boot DOS, the command
MAXFILES 3
is executed, which sets up the default condition: a maximum of 3 files may
be active simultaneously until another MAXFILES command is executed.

The command's syntax is
MAXFILES n
where n must be an integer from 1 to 16. Specifying a value outside this
range will cause a SYNTAX ERROR message from either Applesof t or Integer
BASIC; from the Monitor, a beep is the only indication that you've done
something wrong.

For each file specified, MAXFILES sets aside 595 bytes of memory space
called a file buffer. This additional memory space for each active file
is used to help adjust for the fact that memory speed is far faster than
disk access speed, which involves mechanical motion -- the disk head has
to search the diskette. So in the name of efficiency, a file buffer is
used to "buffer" information going to and from a diskette.

If you retrieve information from a diskette, DOS brings in 256 characters
at a time and puts them in the "input" part of the file buffer, then
delivers to you whatever subset of those 256 characters your program
requested. If you are sending information to a diskette, characters are
stored in the "output" part of the file .buff er until 256 characters have
accumulated, then they're shipped to the diskette all at once.

Suppose you have MAXFILES 1 and one file is active. An attempt to perform
a DOS command (such as CATALOG) will cause the message
NO BUFFERS AVAILABLE
to be displayed.

When the system is booted, the number of active files (n) defaults to 3,
so 1785 bytes of memory are reserved for 3 file buffers. Under most
circumstances, you won't need more than 3 active files. If more files are
required, type
MAXFILES n
(where n is the number of needed files) in immediate execution mode
before loading and running a program.

43

~
In immediate execution mode, increasing MAXFILES erases Integer BASIC
programs and messes up Applesoft strings, since HIMEM: is moved down
without moving the program or strings. To avoid this problem, reset
MAXFILES before loading and running a program.

~
If MAXFILES is used within a program, it changes memory pointers, and a
GOTO, GOSUB, or other instruction can get lost. If you must change
MAXFILES from within an Applesoft program, make the MAXFILES command the
first statement in the program, before any string variables are declared.
For example,
10 PRINT CHR$(4); "MAXFILES 5"
20 REM REST OF PROGRAM GOES HERE

To use MAXFILES from within an Integer BASIC program, you need to create
an EXEC file, as discussed on page 78.

TRACE
The Applesoft TRACE command is a useful debugging tool. But when TRACE is
in effect, DOS commands inside Applesoft programs don't work because TRACE
prints the line number with no RETURN before the DOS command. There's a
partial solution to the problem. You can insert a RETURN (CHR$(13))
into the D$ string
10 D$ = CHR$(13) + CHR$(4)
and then most DOS commands will work properly even if TRACE is in effect.

(~)
~
If TRACE is in effect when DOS (with the D$ fix, above) is WRITEing, all
the TRACEd line numbers will be printed into your text file along with the
characters YQ!! wished to print.

USING THE UPDATE PROGRAM
As discussed in Chapter 2, INIT is used to create slave diskettes. In
this section you'll learn how to create master diskettes. The distinction
between a slave and a master _is not readily apparent: both come charmingly
attired in the latest in black plastic (no, not leather) garb. It's up
to you to revise your greeting program and diskette label to remind
yourself which is slave and which is master.

The System Master diskette contains a program called UPDATE 3.2 that can
run on an Apple II with at least 16K of memory. The UPDATE program does
the following for you:

* "Updates" a previously INITialized diskette to DOS version 3.2
without affecting program or data files that are already stored
on that diskette.

44

* Converts a slave diskette (whose DOS is memory-size dependent)
into a master diskette (whose DOS is self-relocating so that
memory is used efficiently on any size system).

* Gives the updated diskette a new greeting program name, the name
DOS will attempt to RUN each time the diskette is booted.

The UPDATE 3.2 program must be used with a diskette that has already been

INITialized. It will not work with a diskette that is write-protected.

Here's an example of how to UPDATE the diskette INITialized in Chapter 2

(the one with the ONE TO TEN program on it) to convert the slave diskette
created by INIT into a master diskette. For convenience, that diskette
will be referr.ed to as diskette ONE in the discussion that follows.

Before using UPDATE 3.2, do the following:

1) Insert the diskette you wish to update -- diskette ONE for this
example -- into the disk drive and RUN the diskette's greeting
program -- named HELLO on diskette ONE. The message displayed by
a greeting program should include the version of DOS used to
initialize the diskette, and its status as slave or master.

2) Change the appropriate lines of the greeting program to display the new
information, ''MASTER DISKETTE UPDATED TO DOS VERSION 3. 2". Then SAVE
this new version of the greeting program. If the diskette's outside

label requires a similar change, make that change now.

3) Note the~ of the greeting program. If you wish the updated
diskette to RUN this same program each time it is booted, just as it
did before updating, you will give this greeting program name to the
UPDATE 3.2 program, later on. If you've always wished that your
greeting program had some other name than its present one, RENAME
the greeting program now. Later, you will give the ~ name to
the UPDATE 3.2 program.

To~ UPDATE 3.2, do the following:

4) Put the System Master diskette in the drive, boot DOS, and
from either BASIC type
BRUN UPDATE 3. 2

5) You should see the message

DOS 3. 2 MASTER - UPDATE UTILIT'i

COF'r'RIGHT :1979 B'r' APPLE COMPUTER INC

ALL 1':1GHTS RESERVED.

O·JO!·J LOAD 1 NG DOS l MAGE)

6) You'll then be told to type the greeting program name
to be used by the updated diskette:

PLEASE INPUT THE "GF:EETING" PROGRAM ·'S

FILE NAME:

45

We'll assume that when you SAVEd the revised greeting program
on diskette ONE (step 3, above), you used the name HELLO. So type
HELLO
unless you wish the diskette to RUN some other program name each
time the diskette is booted. When you press the RETURN key . to enter
the greeting program name, you'll see this message:

RENEMBE~~ THAT !! UPDATE u DOES NOT c:~~EATE

THE '1 GPEET I NG!! P~~CJGRAM.. [!~'. P LAC:E IT IN

THIS IS THE FILE NAME THF!T !·~ ILL BE

PLACED ~·J I THI N THE IMAGE:

P~~E55
~ ,-,-,-. =
~ r:..==L- ,..i_

4) .Follow the instructions. Remove the System Master diskette from the
disk drive and replace it with the diskette you wish to update -­
diskette ONE, in this case. Finally, press the RETURN key to begin
updating; the program will inform you when the process is complete.

5) After using the UPDATE 3.2 program, always re-boot DOS
before doing any other work.

*** Note ***

The greeting program name that you give to the UPDATE 3.2 program is not
placed in the diskette's CATALOG. It just tells the diskette's DOS which
program name to RUN each time the diskette is booted. You must make
sure that the diskette's CATALOG actually contains a program bearing the
same name you give to the UPDATE 3.2 program.

If you forget to do so (by skipping step 3, above), you'll see the message
FILE NOT FOUND
each time you boot the disk using this diskette.

*** Reminder ***

You must remember the name of the greeting program for each diskette.
You can make this pretty simple by using the same greeting program name on
all of your diskettes.

46

TEXT FILES: AN INTRODUCTION
Sometimes you'll want to use the disk to store information that is not a
program. You may, for example, wish to keep copies of correspondence, a
list of words used in a word-guessing game, intermediate results of a
calculation, or a mailing list. A text file, sometimes called a data
file will allow you to do this and more . The letter T marks text files
in the CATALOG directory.

Text files are created and retrieved using DOS commands in an Integer
BASIC or Applesof t program. A text fi le may be created using a program
written in one language and retrieved from a diskette using a program
written in another language.

Most sample programs in this manual are in Applesoft. If you wish to
convert the programs to Integer BASIC, recall that in Integer BASIC you
can 't make string arrays and you must DIMension string variables. In an
Integer BASIC command such as
INPUT A$, B$, C$
only RETURNs (not commas) may separate the three res ponses. This manual
does not tell you how to make each program run in Integer BASIC: see the
Appendix M of the Applesoft II BASIC Programming Reference Manual for
details of converting between languages. For some hints about changing
the BASIC in which a program runs, after the program has been written,
see page 76 of this DOS manual.

The DOS commands LOAD and RUN (also BLOAD and BRUN) may not be used with a
text file. An attempt to do so wi ll cause the message
FILE TYPE MISMATCH
to appear . LOAD and RUN expect a BASIC program file (and BLOAD and BRUN
expect a Binary machine-language fil e) , not a text file. Instead, you
must write programs that send data to a text fil e and retrieve data from a
text file, using the DOS commands discussed in this chapter:
OPEN
CLOSE
READ
WRITE
APPEND
POSITION
EXEC

The commands OPEN, READ, WRITE, APPEND and POSITION cannot be used in
immediate- execution mode . If you try to do so, you 'll receive the message
NOT DIRECT COMMAND
These commands must be used in deferred-execution mode, that is, from
within a program. The commands CLOSE and EXEC may be used in
immediate- execution mode.

In addition to the commands listed above, the DOS commands
LOCK and UNLOCK
DELETE
RENAME
MON and NOMON
VERIFY
CATALOG
work with text files in the same way they work with program f iles.

48

There are two different types of text files: sequential text files and
random-access text files. Both types of text files store strings of ASCII
codes to represent the data, but in different formats. Diagrams of the
two text-file types are shown below (the character) represents the
RETURN character, sent automatically at the end of most PRINT statements).

"PICTURE" OF A SEQUENTIAL TEXT FILE

Character: 17 I, IA IT I' lo IN IE I, IB IL lo lw I> I

ASCII: l55l Bl65l84l 13l 79l 78l 69l 13l66l 76l79l87l13l00l00l00l00100100100I

File Byte: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 -- --.--Field: 0 2 3

"PICTURE" OF A RANDOM-ACCESS TEXT FILE
Example: Record Length 5, One Field per Record

ASCII: l55l13100100100165IB4113100100119l78J69II3l00J66J76J79J87Jl31001

File Byte: 0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Record Byte: 0 2 3 4 0 2 3 4 0 2 3 4 0 1 2 3 4 0 -- ---- --...--
Field: 0 0 0 0 .._,,_., .._,_.. .._,_.. ..._.,--

Record: 0 1 2 3

The terms "field" and "record" will be discussed in Chapters 6, 7 and 8.
The commands OPEN, CLOSE, READ, WRITE and POSITION are used with both
types of files, but in somewhat different ways. Sequential text files are
simpler to use and understand, in some respects, so we will discuss the
use and structure of sequential text files first. 'The use of
random-access text files is described in Chapter 8. More detailed and
technical information about all types of files can be found in Appendix C.

SEQUENTIAL TEXT FILES: SOME EXAMPLES
Suppose you want to make a file containing a list of words to be used in a
word-guessing game. Here are two pairs of programs that deal with such a
file. The first program in each pair creates a text file on the diskette.

The second program in each pair retrieves the data stored in the text
file from the diskette.

This program creates a text file named WORDSl, containing the words APPLE,
BANANA, CATALOG, DORMANT, EAGLE, FRUIT, GOOSE, HAT and ICICLE.

49

20 D$ = '' " : F.'.EM

5fi

PRINT L-':;.._; "OPEN \·JOF:D5:1"

PR I NT v-+·, "L·!F.'. I TE ~iORDSi"

PF.'.INT "APPLE"

9(1

:1€1f1
:1:1.(i

F'PINT "BANANA 11

PPINT !!CATALOG 11

PF.~ I NT H DfJF-:MANT ii
PRINT !IEAGLE 11

PRINT 1!FPUIT 11

Pr;;:: I NT li GOC15E II

:12f1 P~'. I NT fl HAT"

:130 P~~INT "iCIC:LEit

:140 PPINT D$.; 11 CLOSE L·~(JF~D51 11

i50 END

Line 30 OPENs the file, using the normal format for sending a DOS command
from within a BASIC program. OPEN places a text file named WORDSl in the
CATALOG (if it was not there previously).

Line 40's WRITE command causes subsequent output from PRINT statements to
be sent to the named text file instead of to the TV screen. So in this
program, each PRINT statement in lines 50 through 130 will send the word
inside the quotation marks to the text file WORDSl, and not to the TV
screen.

Line 140 CLOSEs the file, and ends the file-writing process.

If the program is RUN and you're not in MONitor mode you won't see
anything: usually DOS commands and disk input and output are not
displayed. But if, as explained in Chapter 5, you type
MON C, I, 0
(or simply

MON C, 0
since no input from the disk is involved) and then you RUN the above
program you'll see the following:

OPEN ~·JO~'.DS:l

WRITE HORD:;i
RPPLE

BANANA
CATALOG
DOF.:r·~RNT

EAGLE
FPUIT

GOOSE
HAT

ICICLE
CLOSE \•jOF'.DSi

50

At this point you'll have a file called WORDSl on your diskette. WORDSl
will be marked with a "T" in the CATALOG to indicate that it's a text
file. The file consists of items of data (in this case, words) separated
by RETURNs. A RETURN character is automatically sent at the end of every
PRINT statement which does not end with a comma or a semicolon. Note that
in this sense each RETURN is a character rather than an action -- in
particular, it is the character with ASCII code 13.

Each item of data, ending with its RETURN character, is called a field.
A field is stored in the text file as a series of characters represented
by their ASCII codes. The last character in each field must be the RETURN
character, ASCII code 13.

WORDSl is called a sequential text file because each field is stored
beginning immediately after the RETURN character of the preceding field.
When stored on the diskette, fields may be of different lengths: the word
APPLE takes 6 bytes (one for each letter plus one for the RETURN
character), BANANA takes 7 bytes, and so on. A sequential text file is
stored on the diskette as one long, continuous series of ASCII-coded
characters, a chain of fields with no gaps left between them.

Once WORDSl is on the diskette, the question immediately arises, "How can
I retrieve it?" The following Applesoft program will retrieve WORDSl:

10 r::CJ 'l

20 D$ = ~:EM CTRL -!)

4t1 p:;~ I NT [)$; H ~~EAD i·J()F::t)S j _ !!

5t1 FO~'. I = :1 TO 9
6fi INFUT H:+ .. __ 1 _ _.

70 NE:x; T I
f:O P~: lNT D$_; '!CLOSE l·JCH~~D5i.. u

90 Ef·.ID

Line 30 OPENs the file; line 40 tells DOS that all subsequent INPUT or GET
statements will refer to the named diskette file instead of the Apple's
keyboard. It is as if the disk were typing responses, instead of you. An
INPUT command always causes one complete field, ending with its RETURN
character, to be "typed in" to the Apple. If another INPUT command
follows, it will cause the next field to be read in, and so on. So
lines 50 through 70 cause DOS to start at the beginning of WORDSl and
retrieve 9 fields which are placed in the array A$(1), A$(2), A$(3),
A$(4), ••• A$(9). Line 80 politely CLOSEs the file.

If MON C, I, 0 is not in effect when the above program is RUN, you will
see nothing on your screen. But if MON C, I, 0 (or just MON C, I) is in
effect, you'll see

OPE N (·WF.DS1

READ (~OF.'.[6:1-

·?APPLE

-;BANANA

51

·~EAGLE

·~'FRUIT

-:O·Hf!T

·~·ICICLE

CLOSE HO~~l>S:1

A question mark (?) is displayed before each INPUT from the disk, just
as it is before each normal keyboard INPUT.

To check that all worked as claimed, try typing
PRINT A$(2), A$(9), A$(4)
and you should see the words BANANA -- from A$(9) -- then ICICLE and
finally DORMANT. This is a good way to check that information was read
correctly.

If you modify the program MAKE WORDSl to make different words, be sure to
DELETE WORDSl before re-RUNning MAKE WORDSl. If you don't, you may end up
with a mixture of the old words and the new.

Here's how to cr·eate a sequential file called WORDS2 containing the same
words as WORDSl, but with all nine words in one field. Each word is
followed by a comma, so that an INPUT statement with multiple variables
(9, in this case) can be used to retrieve the separate words.

5£1 P~~ I NT 11 APPLE_, BANANA_, c:RTRLO
G_, •!:

7£1 F~~INT H G()C!5E_. HAT_, IC:IC:LEI!

8(1 P~~INT [)$_; 11 C:L{)SE !.JOPDS2u

90 ENf)

Note that the PRINT command in line 50 ends with a semi-colon. A
semi-colon at the end of a PRINT command stops the automatic printing of a
RETURN character after the last data character. Therefore the characters
sent to the disk by the next PRINT command will appear in the ~
field with the characters sent by line S0's PRINT command. The PRINT
command in line 60 also ends with a semi-colon, so the field still does
not have its end-marking RETURN character. Line 70's PRINT command ends
without a semi-colon or comma, allowing the automatic final RETURN
character to be sent at last. This ends the field, which now contains all
the characters PRINTed by lines Sf}, 61} and 70.

52

~
Commas in a disk-less PRINT command usually send characters to defined
tab-fields on the screen. However, commas do not serve this same
formatting function in PRINT commands used when WRITEing to the disk:
these commas are treated as if they were semi-colons. In PRINTing to the
disk, items separated by commas will be concatenated, with no intervening
spaces inserted. A comma at the end of a PRINT command has the same
effect as a semi-colon: no automatic final RETURN character is sent.

When the program MAKE WORDS2 is RUN with MON C, I, 0 in effect, you'll see

OPEN WORDS2

WRITE WORDS2
APPLE, BANANA.. CATALOG, ·-DORMANT, EAGLE,

FRUIT, GOOSE.. HAT, ICICLE

CLOSE WORDS2

This Applesoft program retrieves WORDS2 :

i0 REM RETF<: I EVE l·JORD5 2

20 D$ = "" : REM CTRL-D

30 PRINT D$; "OPEN WORDS2"

40 PRINT D$_; " READ l.JORDS2"

50 INPUT A:1$.• A2$, AJ:$, A4$_. A5$.• A6$

, A7$.. A8$.. A9$

80 PF:INT D$.; " CLOSE WORD52 "

90 END

When the above program is RUN with MON C, I, 0 in effec t, you'll see

OPEN MORDS2

READ l-JORDS2

? APPLE.. BANANA.. CATALOG.. DORMANT.. EAGLE

, F RUIT .• GOOSE. HAL ICICLE

CLOSE i·JORDS2

In Integer BASIC, commas can separate multiple INPUT responses for
numeric variables, but not for string variables. Only RETURN
characters can separate multiple responses when INPUT is used with
multiple string variables. In Integer BASIC, therefore, the program
RETRIEVE WORDS2 will assign the entire field (9 words, 8 commas and 6
spaces) to the variable Al$. Then you will get the END OF DATA message
when there is no field to assign A2$.

In Applesoft BASIC, you can also use the GET command to retrieve data from
a text file, character by character. This has the advantage that you can
define .fil1Y character as marking the end-of-word, for instance. The
following Applesoft program also retrieves the text file WORDS2.

In line l~, the CLEAR command sets all variables (including I and all
A$(I)'s) to zero. Line 2~ uses Applesoft's alternate way of setting D$ to
CTRL-D (4 is the ASCII code for CTRL-D). This method avoids the invisible
(and un-copyable) control character.

53

-'-"-' CLEAR : >;::EM GET ~·JORDS2
20 D$ CHR$ (4): REr1 CTRL-D
30 R$ CH/;:'.$ (:13): REM RETURN

40 T$ CHR$ (:1) : ~'EM CTRL -A
50 PR I NT [J.$_; II OPEN i·JC!R[J52 II
60 PRINT D$; "READ t~JGF-~DS2 11

70 I = I + .L

80 GET B$

9;;:1 IF 8$ = ".• " THEN GOTO 70

:100 IF B$ = R$ THEN !JOTO :t::.'.:0

11.0 A$< I) = P.$ (I) + """.
:1:15 PRINT T$.; A$(I)

120 GOTO 80
:130 PF:INT R$.; [)$; "CLOSE i·JOFm52"
:140 END

Line 80 GETs one character at a time from the text file WORDS2, which was
OPENed for READing in lines 50 and 60. If the new character is neither a
comma nor a RETURN, line 110 adds the new character to the end of the
string A$(I). Then line 120 sends the program back to line 80, to GET the
next character. Thus, the program builds up the first word, character by
character, in A$(1).

When a comma is found the first word is ended, so line 90 sends the
program back to line 70 to increment I and start collecting a new word in
A$(2). And so on. Finally, a RETURN character (R$) marks the end of the
field, so line 100 sends the program on to line 130 to CLOSE the file and
end the program. Note the use of CHR$(13), in line 30. You cannot
directly type ~ RETURN character into a BASIC program line (a typed
RETURN ends a program line), but CHR$(13) is a RETURN character in
Applesoft.

When GET obtains characters from the disk, these characters are not
displayed on the screen, even in MON C, I, 0 mode. Line 95 has been added
to let you see the words as they are built up, character by character.

~
After an Applesoft GET command takes its response from a diskette text
file, the following problems arise:

1) With NOMON C,I,O the first character PRINTed after the GET
will not appear on the screen.

2) With MON C,I,O the first character PRINTed after the GET
will appear on the screen.

3). In either mode, if a DOS command is the first item PRINTed
after the GET, the DOS command may not be executed because
the necessary preceding RETURN is missing.

In the program GET WORDS2, the non-printing "throw-away" character CTRL-A
(T$) was placed before the first desired PRINT character in line 115.
This takes care of problems 1 and 2, above. To cure problem 3, the RETURN
character (R$) was placed before the PRINTed DOS command in line 130, much
as was done with TRACE (see page 44).

When this program is RUN with MON C, I, 0 in effect, you will see the
following (but all displayed in one column, not three):

54

A

AP
Ff PP
APPL
APPLE

8
BA
BAN
BANA
BANAN
BANANA

c
CA
CAT
CATA
CATAL
CATALO _)
CATALOG

D

DO
!>OF.:
f:•ORM
DORMA

DOF:MANT

E
EA
EAG
EAGL
EAGLE

F
Fl':

FRU
F~:U !

FRUIT_}

G()O

GOOSE

H

HA
HAT

I

I C:

ICI
ICIC
I C: I CL

IC: I CLE

CLOSE !-JORDS2

And lastly, here's an Applesoft program that creates a file WORDS3, with 2
words in the first field, 3 words in the second field, and 4 words in the
third field.

2 t.1 D:t = CHF":t (4) : REM CTRL - [)
::f1 PF.~INT [)$_; uc:;PEN i.·JO~:D53 11

4(1 PRI NT [)$_; !IL·J~~ ITE i..J oi;~DS]:u

50 PF:I NT 11 APPLE .. BANANA "

6£1 PRINT !•c:ATALOG_. DOF.:MANT.' EAGLE"

?£1 PF:INT 11 FF-:UI T .. GJ.:)C15E .. HAT.· IC I CLE

80 PPINT D$.; "CLOSE HOF.:DS:?."

9€1 END

The first field will contain
APPLE,BANANA
and is 13 bytes long, one per character (commas must be counted too) plus
one for the RETURN character. The second field,
CATALOG,DORMANT,EAGLE
is 22 bytes long; the third field,
FRUIT,GOOSE,HAT,ICICLE
is 23 bytes long.

55

When RUN with MON C, I, 0 in effect you'll see

OPEN WOR[63

lJRITE HORDSJ:

APPLE.· BANANA

CATALOG, DORMANT.. EAGLE

ff:UI T.. GOOSE., HAT, ICICLE

CLOSE l·JORDS3

Here's a program to retrieve WORDS3:

1f1

20
:3:0

REM
D$ =

PRINT

RETRIEVE l·JORDSJ: : A

CHfU (4) : F.:EM CTRL -D

D$; "OPEN l·JORDS:c"

4t1

50
PRINT

INPUT

D$; "READ l-JOF~DSJ:"

R$_.S$

60 INPUT T$, U$_. 1/$

7(1 INPUT i·J$.. >=:$.• 1r'$.. Z:t
8€1 PRINT [)$_; " CLOSE HOFWS3: "

90 END

When RUN with MON C, I, 0 in effect, you'll see the following:

OF'EN l>JOF:f'SJ:

READ i.JOF.:DSJ:

"APPLE .. BANANA

?CATALOG_. DOF.:MANT .. EAGLE

?FF.:UIT .. GOOSE, HAT.. I CICLE

CLOSE l~ORDS3

The programs to READ the sequential text files WORDS!, WORDS2, WORDS3 were
carefully designed to READ exactly the correct number of fields and the
correct number of items per field. In general, a program to retrieve a
text file must be designed around the specific file. If you make a
~istake, the results can appear somewhat confusing. For instance,
consider the following "wrong" program to retrieve the words in text file
WORDS3.

10 F.:EM RETRIEVE HORD53 : B

20 D:t = "": REM CTRL-D
30 Pf<:! NT D$.• " OPEN HORDSJ: "

40 PRI NT D$; "READ i·JOF::DS3: "

50 INPUT R$_. S$

60 INPUT T$_. U$.. V$

70 INP UT iJ$_. :":$.. 'r'$

80 PF.: I NT [)$_; "CLOSE i.JCtRD53 "

9t1 ENC•

56

With MON C, I, 0 in effect, here's what you would see on RUNning the
progr am.

OPEN l·KIF:D53

READ i-JORD53

?APPLE.. BANANA

?CATALOG_. DOF.'.MANT.. EAGLE

?FRUIT.. GOOSE_. HAL ICICLE

?DffF.'.A I GNOF.:ED

CLOSE MORD53

The INPUT command in line 70 caused the entire field containing
FRUIT,GOOSE,HAT,ICICLE
to be READ into the Apple. The first three words were assigned to the
variables W$, X$ and Y$. But there is no variable corresponding to the
fourth INPUT response, ICICLE, so the message
EXTRA IGNORED
is displayed, and execution continues.

Here is another "wrong" program to READ the text file WORDS3:

1£1 REM

20 0$ =
RETRIEVE l·JOF.:[:•53 : C

"": REM CTRL-D

30 PRINT [)$;; nOPEN l.JORD53n

40 PRINT D$_; "F.:EAD t.JOF:DS3:"

50 INPUT R$.. 5$

60 INPUT T$_. U$_. "/$_. ~J$

70 INPUT ;-::$_. "!"'$.• 2$

80 PF.'.INT [)$_; "CLOSE 1.JCtRD53:"

9£1 END

And here i s a MON C, I, 0 RUN of the program.

OPEN l·JOF:DS:?

REA[:< l·Kil''.[:-53:

?APPLE.. BANANA

?CATALOG .• DOF.'MANL EAGLE

??Fl''.UIT_. GOOSE.. HAT_. ICICLE

?D0:TF:A IGNORED

?
END OF DATA

BREAK IN 7>3

This time, line 60 caused the field
CATALOG,DORMANT,EAGLE
to be READ into the Apple. The three words are assigned to the variables
T$, U$ and V$. But line 60's INPUT command expected four responses, so
it causes the next complete field to be READ into the Apple :
FRUIT , GOOSE,HAT,ICICLE
The first word, FRUIT, is assigned to line 60's last variable, W$. There
are no more variables with t his INPUT command, so the message
EXTRA IGNORED

57

is displayed, and execution continues. There are no more fields in the
file, so line 70's INPUT command causes the
END OF DATA
message, and the program comes to a stop.

A somewhat more general pair of programs, MAKE TEXT and RETRIEVE TEXT are
discussed in a later section. They illustrate how to make a program more
adaptable to different text files.

OPEN-ING AND CLOSE-ING SEQUENTIAL FILES
Sequential text files should be used when information is to be retrieved
in a linear fashion from the beginning to the end of the file, and when
information does not require much updating or on-going revision. For
example, a sequential file could be used to contain data for a
word-guessing game, as in the preceding sample programs.

To create a sequential text file, the commands
OPEN
WRITE
PRINT
CLOSE ,
are used, in the order shown (though not necessarily right after each
other). To retrieve a sequential text file, the commands
OPEN
READ
INPUT
CLOSE
are used, again in the order shown though not necessarily right after each
other. Both procedures are illustrated in the preceding section.

A certain ritual is required before and after you create (WRITE) a
sequential text file: before using the file you must OPEN it. When you're
done, you must CLOSE it. The same is true when retrieving (READing) a
sequential text file: OPEN before READing, and CLOSE the file when you're
done.

Files that have been OPENed must be CLOSEd. Failure to CLOSE a file that
was OPENed and written to by a WRITE command may result in loss of data.

The syntax for these commands is similar to other DOS commands.
[Note: OPEN and CLOSE are also used with random-access files -- see
Chapter 8.]

OPEN f [,Ss] [,Dd] [,Vv]
CLOSE [f]

Examples: OPEN SESAME
OPEN SHOP, D2, S7
CLOSE
CLOSE MOUTHED
CLOSE WINDOW

58

OPEN sets aside workspace in the Apple for the file f (for those who know
about such stuff, OPEN allocates a 595-byte file buffer to handle this
file's input and output), and gets the system ready to read or write from
the beginning of the file. OPEN also sets up the slot and drive numbers
to be used by the subsequent WRITE (or READ) command.

The CLOSE command releases the workspace in the Apple (de-allocates the
file buffer associated with the file f). If f is not specified, all OPEN
files will be closed, with the exception of any file being used by the
EXEC command. EXEC files are discussed later in Chapter 7. OPEN
sometimes CLOSEs too: OPEN first checks to see if the named file is
already OPEN; if so, it CLOSEs it before re-OPENing it.

Note that the CLOSE command has no Drive or Slot parameters. If you type
CLOSE MYFILE
then any file named MYFILE will be CLOSEd, regardless of the slot and
drive number associated with the file. Similarly, the command
CLOSE
will CLOSE all files (except a file being EXECed) on all disk drives.
In various circumstances, you may wish to delete a file f that may or may
not exist. This is especially important to avoid problems of overwriting
an old file (unless you overwrite the entire old file, part of the old
file will remain, attached to the end of your new file). Suppose a game
creates and uses the file SCORES each time it is played, and you wish your
program to delete any old file by that name at the start of each new game.

The command
DELETE SCORES
will cause the error message
FILE NOT FOUND
if the file doesn't exist, and your program will halt. Here's a quick way
to delete any file named SCORES and re-OPEN it for new data, whether or
not that file already exists:

5 F-~EN s~·o~:ES f>ELETEi;~

10 [)$ = pp; D$ I 5 CTF.'.L -[)

· 15 FP I NT [:>$_; " OPEN SCOF.:ES"

20 PRI NT D$.= Hf)ELETE s c:oPES 11

"'-·-' Pfd NT D~.' " OPEN SCOPES"

3 (1 PEM

REMA I NDEF.: OF F'F:OGPAM

HERE

WRm-ING SEQUENTIAL FILES
Here is another program which creates a sequential text file. This
Applesof t program creates a text file named SAMPLE which contains 3
strings and 10 numbers.

The file SAMPLE may or may not already exist each time the program is RUN:
if it does exist, it should be DElETEd so as to remove old data from the
file. If it does not exist and your program tries to DELETE it, you'll
receive the message--
FILE NOT FOUND

59

and the program will stop. Lines 2Q and 3Q take care of the problem. If
SAMPLE already exists, line 2Q OPENs it and line 3Q DELETEs it. If SAMPLE
does not exist, line 2Q creates a file SAMPLE and line 3Q DELETEs it.
When line 4Q is executed it creates a clean new file SAMPLE, so the
problem of mixed files is avoided.

0 REM MAKE SAMPLE
10 D$ = CHR$ (4) : REM CTRL-D

20 PRI NT D$.; "OPEN SAMPLE"

30 PRINT D$.; "DELETE SAMPLE"
40 PRINT 0$.; "OPEN SAMPLE"
50 PRINT 0$.; "HRITE SAMPLE"
60 PRINT "HI HO" : PRINT "HI HO"
70 PF: INT "OFF TO THE DISK HE GO"
80 FOR .J

90 PRI NT ~T

100 NEXT J

1 TO :i\3

110 PRINT 0$; "CLOSE SAMPLE"
12£1 END

Here's what you see on the screen when you RUN this program, if MON C, I,
0 is in effect.

OPEN SAMPLE

DELETE SAMPLE
OPEN SAMPLE
~.JR ITE SAMPLE
HI HO
HI HO
OFF TO THE DISK !..JE GO
1

2
3
4
5
6
7

8
9
10
CLOSE SAMPLE

Before you WRITE a file, it must be OPENed; CLOSE it (quietly, please)
when you're done. Both the OPEN and WRITE commands must refer to the same
file name.

Once a WRITE command is executed, any subsequent PRINT commands send all
characters to the diskette, instea d of the screen. A WRITE command is
cancelled by the use of any DOS command in a PRINT statement. Even the
"empty" DOS command (just CTRL-D) will do.

60

An INPUT command of the form
INPUT X$
also cancels a WRITE command, but only after storing as the last text file
character the ? which the INPUT command normally displays on the screen.
If the form
INPUT "WHAT'S YOUR NAME? "; X$
is used, the WRITE is canceled after the characters in the string are sent
to the diskette.

An error message cancels a WRITE command, but only after the entire
error message is stored as the last field in your text file.

The syntax for the WRITE command when used with sequential files is:
WRITE f
[Note: WRITE is also used with random-access files, see Chapter 8.]

Examples: WRITE LETTER
WRITE RIGHT

The sample program given at the beginning of this section is a simple
illustration of the most basic (BASIC?) elements needed to create a text
file. A slightly more general Applesoft program called MAKE TEXT is on
the System Master diskette that came with your disk drive.

MAKE TEXT allows you to create a sequential text file containing up to 100
strings; each string may have at most 239 characters. Try it -- you'll
like it (we hope). Place the System Master diskette in your drive and
type
LOAD MAKE TEXT

A LISTing of the program should look like this:
5 ~'.EM MAKE TE~-a

10 DIM A$C108>:I = 0
20 D$ = CHFU (4): REM CHR$(4) IS

CTRL-[:•

30 HOME : PRINT

40 PRINT "THIS PROGRAM LETS YOU
WR I TE TE:":T FI LES_

50 PR l NT '"T'OU GET TO T'-.'PE ONE ST

RING AT A TIME
60 PRINT "A STRING MA',-' HAVE UP T

0 239 CHARACTERS_

70 PR I NT : I = I + 1
8£1 PRINT "<TO QUIT.· PRESS RETURN

KE'r; Fif;ST)"

90 PRINT "T'.,-'PE STRING #"; L ":
(Continued on next page)

61

(Continued from previous page)

100 INPUT " " ; A$ CJ)
1:10 IF A$(I) [--._ II JI GOTO 7(1 ~ F.~EM

FIRST KE'T' PRESSED l~AS NOT

120 PRINT
13:0 I NPUT "~~HAT F I LE NAME··,:- ''.; N$

140 PRINT D$.; "OPEN " ; N$

150 P F:INT D$; " DELETE " ; N$

160 PF.:INT [)$; "OPEN " ; N$

1 70 PRINT D$.; "l·JR ITE "_; N$

180 PRINT I - 1
190 FOR J = 1 TO I :1

2€1>::1 PF.'.INT A$ (J)

220 PF:I NT [)$_;"CLOSE " ·' N$

Once the program is LOADed, SAVE it on a diskette that's not
write-protected. (This step is neces s a ry because this program, like the
ANIMALS program discussed in Chapter 4, creates a new file.)

l s MAKE TEXT still in your Apple? And a non-write-protected disk in the
dr i ve? If so, type
MON C, I, 0
s o you can s ee the commands sent to and from the disk. Then type RUN
and you should see the following message:

THI S PROGF:AN LETS 'iOU ~JRITE TE:,<T FILES.

'<'OU GET TO T'iPE ONE STF: ING AT A TIME.

A STRI NG MA'T' HAVE UP TO 229 CHAF:ACTERS.

<TO QUIT.. PRESS RETURN KE 'T' F I RST)
TYPE S TRI NG #:1:

Type in as many strings as you like (up to l~~ may be entered).
Warning: the program uses INPUT, so don't type commas or colons into
your strings. When you wish to quit, just press the RETURN key instead of
typing a string. You'll be asked

l·JHAT FI LE NAME.,

Choose a name for your text file, press the RETURN key, and as your
strings are sent to the disk you'll see them printed on the screen. First
will appear the disk commands
OPEN f
DELETE f
OPEN f
WRITE f
(where the f is replaced by the file name you chose). They'll be followed
by a number -- the number of strings you entered into the file. (This

62

number will be used by a program discussed in the next section that
retrieves your file). Next you'll see your strings. Finally you'll see
the message
CLOSE f

Here's a sample RUN of the MAKE TEXT program:

'T'CJU GET TO T'~PE C!NE STF=~ l NG AT A TI ME_

i~HAT FI LE NAME .. ? TEST

OPEN TEST

DELETE TEST
OPEN TEST

4

HE~~E--- 5 STP I NG :1

ON ~·JE GO

ENOUGH ALF.~EfH)'T' ~

CLOSE TEST

If you OPEN a text file that already exists and then WRITE to it (without
first DELETEing the file and re-OPENing it), then you will overwrite at
least a portion of the file. Unless you overwrite at least as many
characters as existed in the old file, the result is that the new file
contents will be a mix of the data PRINTed to the file on the two
occasions. First will appear the new characters you PRINTed to the file

63

this time, and then will follow any portion of the old file you did not
overwrite. To clear all characters from the old file, OPEN and DELETE the
old file before you OPEN it anew. (In the program MAKE TEXT, lines 140
and 150 take care of "cleaning out" any previous text file by the same
name.) To keep programs from overwriting a file, LOCK the file.

READ-ING SEQUENTIAL FILES
The DOS command READ allows you to retrieve a text file. Once a READ is
executed, any subsequent INPUT statements (or GETs in Applesoft) refer to
the specified file instead of the Apple's keyboard. This Applesoft
program retrieves the text file SAMPLE created by the program listed at
the beginning of the preceding section. READ, like WRITE, must be
preceded by OPENing the file to be used. The file must be CLOSEd as well.

5 REM RETF.'.IEVE SAMPLE

1£1 [)$ = CHR$ (4) : F.'.EM CHI<'.$ (4)

IS CTF.'.L-D

20 P~~INT D$.; 11 0PEN SAMPLEn

3(1 PR.INT [)$_; ··~~EAD SAMPLE 11

40 INPUT A$_. B$.. C$

5f1 FCJR I 1 TO 1.t":i

60 INPUT i·J

80 P~:INT [)$_; HCLI::JSE SAMFLEff

An OPEN must precede a READ, and an INPUT (or, in Applesoft, a GET) must
follow a READ. The OPEN and READ must refer to the same file name. If
you RUN the program with MON C, I, 0 in effect you'll see this:

OPEN SAMPLE

REf!i) SAMPLE

?HI HG

??OFF TO THE DIS~< i•JE GO

?1
?2

?3

?6
?7
?8

?9

?:10

CLOSE SAMPLE

The program was written explicitly with the SAMPLE file in mind: it
assumes that the text file contains 3 strings, (A$, B$, and C$ in line 40)
and 10 integers (W in line 60). Two question marks are printed when B$
and C$ are INPUT because RETURNs separated the INPUT's multiple responses.

64

A READ command is cancelled by the use of any DOS command in a PRINT
statement. The "empty" DOS command (just CTRL-D) will do just fine. Use
of the PR# or IN# commands also cancels a READ.

The syntax for the READ command is the same as for WRITE:
READ f
[Note: READ is also used with random-access files, see Chapter 8.)

Examples: READ LETTER
READ CAREFULLY

Stopping a READ in Applesoft using CTRL-C will generate a string of
REENTERs. To avoid this, press the RESET key to stop the program.

An Applesoft program that retrieves text files created by the MAKE TEXT
program is on the System Master diskette. Place the System Master
diskette in your drive and type
LOAD RETRIEVE TEXT
then SAVE the program on the same diskette you used for MAKE TEXT. (The
program is really a companion piece to MAKE TEXT, and it's simply more
convenient to have them on the same diskette.)

A LISTing of the program should appear as follows:

1-0 D$ == CH~:$ (4) : REM CTRL -D

20 HOME P~:INT "THIS P~:OGRAM 'F:~E

TF:: I E'·/ES TE~~T FI LES !I
30 PRINT "C:~:ERTED B1

T
1 THE .•" MAKE T

40 PRINT "MON C .. I, 0 IS IN EFFECT

50 PRI NT
60 I NPUT 11 ~-!A:-·1~ OF TE:=<T FILE"? 11

_; Z
$

70 PFUNT D$_; "MON C .. !_. 0"

80 PRINT
90 PR I NT [)$_; "OPEN .._, Z$

10t1 PR I NT [)$_; "F:EA[:• "_, Z$

1:10 INPUT I
120 DIM A$0:: I>
i~:i} FOR J = :1 TO I
140 INPUT A$CJ)
:150 NE:,,;T -J
160 PR 1 NT [:; $_; " CLOSE "_; Z$
:170 PRINT [)$ _• "NOMON c_. L O"

65

Now type
RUN
and you should see the message

THIS PROG~~AN RET~~IE 'v1ES TE>:;T FILES
CF.:EATED B'T' THE ---MAKE TE:;(T·' PROGRAM.

MON C.. L 0 I::O: IN EFFECT .

NAME OF TE:Off FI LE-::·

Type in the name of the text file you created using the MAKE TEXT program,
press the RETUR~ key, and you should be off and running (oops -- rather,
READing).

Here's what you'll see if the file TEST, used as a sample at the end of
the last section, is retrieved using the RETRIEVE TEXT program:

THIS PPOGF:AM F.:ETRIEVES TE>•:T FILES
CREATED f:'y' THE ---MAKE TE)ff·· PF:OGF:AM.

MON C_. I .0 0 IS IN EFFEC:T.

NAME OF TEi<T FILE·~· TEST

OPEN TEST
F.:Efil) TEST

?4
?HERE ···5 5TPING ._!..

?AND f·1"7' 5ECCif-4D 5TF::ING

CLOSE TEST
NOMON c_, I.· O

MORE ON SEQUENTIAL FILES: APPEND AND POSITION -
The DOS commands APPEND and POSITION, respectively, allow you to add text
to the end of a sequential text file, and to access information from any
specified field within a text file.

APPEND allows you to add data to the end of a sequential text file.
This is particularly useful if you wish to extend the information in a
sequential text file, as in the ANIMALS program discussed in Chapter 4
could have. The command OPEN, you will recall, always sets the
position-in-the-file pointer to byte 0, the first character in the file.

The command APPEND performs an OPEN for you on a file that already
exists, then sets the position-in-the-file pointer to one byte beyond the
last character in the file.

The following program builds a file called TESTER that contains the two
strings "TEST 0" and "TEST l ":

66

5 REM !'lf"ii<E TESTER
10 D$ = CHR$ (4) : REM CTRL-D
20 PRINT !)$.;"OPEN TESTER"
30 PRINT C•$; "DELETE TESTER"
40 PRINT D$; "OPEN TESTER"
50 PRINT D$; "WRITE TESTER"
60 PRINT "TEST 0"

70 PRINT "TEST 1"
80 PRINT D$.; "CLOSE TESTER"

The fol l owing program APPENDs the strings "TEST 2", "TEST 3" and "TEST 4"
to the f ile TESTER:

5 REM APPEND TESTER
10 D$ = CHR$ (4): REM CTRL-D
20 PRINT D$.; "APPEND TESTER"
30 PRINT D$; "L•JRITE TESTER"
40 PRINT 11 TEST 2"
50 PRINT "TEST 3u

60 PRINT "TEST 4"
70 PRINT D$.; "CLOSE TESTER"

The following program displays the file TESTER:

10 REM RETRIEVE TESTER
20 D$ = CHR$ (4) : REM CTRL-D
30 PRINT D$; "OPEN TESTER"
40 Pi''.INT D$; "1''.EAD TESTER"

50 FOR I = 1 TO ._.

60 INPUT A$
70 NEXT I
80 PRINT 0$; nc:L()SE TESTE~~ 11

APPEND must be followed by WRITE (attempting to READ will just cause the
END OF DATA message). The syntax for the APPEND command is doubtless
familiar if you've been reading straight through this manual:
APPEND f [,Ss] (,Dd) [,Vv)

APPEND, even though it is used only for WRITEing into a text file, does
not cause the
FILE LOCKED
message if the file is locked. That message is given only if you attempt
to actually WRITE to the file.
The DOS command POSITION allows you to WRITE or READ information beginning
in any given field of a sequential text file. The syntax for the POSITION
command is
POSITION f [,Rp)
where Rp is the ~elative-field £.OSition. This command specifies that .
DOS's position-in-the-file pointer will be moved forward (only) to the
p-th field ahead of the current pointer position. If pz~, the following
READ or WRITE begins in the current field. If p=l, the following READ or
WRITE skips the current field and begins in the next field. If p=2, the

67

following READ or WRITE skips two fields including the current field,
before beginning to READ or WRITE. And so on. If your file does not
contain any field corresponding to the relative-field position specified
by the POSITION command, the message
END OF DATA
will be displayed, and program execution will stop.

POSITION with the Rp parameter specifies a relative field position, p
fields ahead of the current field. POSITION must refer to a file that you
have already OPENed. OPEN automatically sets the position-in-the-file
pointer back to the beginning of the first field. Thus, if POSITION is
used inunediately after OPEN, the relative-field position also
corresponds to the actual, or absolute, field position. In no other
case is this true. ~~~

Like any other DOS command, POSITION cancels a READ or a WRITE. Therefore
POSITION must be used before the associated READ or WRITE.

POSITON actually scans the contents of the file, byte by byte, looking for
the Rp-th RETURN character. If, during this process, it encounters an
"empty" (value 0) byte, the message
END OF DATA
is presented immediately. It is not necessary to actually INPUT or GET
any such null character.

Here is a program that uses POSITION to retrieve various fields from the
TESTER file, created earlier by the MAKE TESTER and APPEND TESTER
programs:

10 REM POSITION TESTER
20 D$ = CHR$ (4): REM CTRL-D
30 PRINT D$; "OPEN TESTER "
40 PRINT D$; "POSITION TESTER.· R2"

50 PRINT !)$_; "READ TESTER "
60 INPUT A$
70 PRINT D$; "POSITION TESTER, Ri"
80 PRINT [)$; "READ TESTER"
90 INPUT 8$

100 PRINT [)$; "OPEN TESTER"
110 PRINT D$; "POSITION TESTER, R3

120 P~:INT D:t; "READ TESTER"
130 INF·UT C$

140 INPUT E$
150 PRINT D:t; UCL()SE TESTER"

If you RUN this program with MON C, I, 0 in effect, you will see:

OPEN TESTEF-'.
POSITION TESTER .. R2

READ TESTEF.:
?TEST 2
POSITION TESTER, F'.:l

68

READ TESTER

?TEST 4

OPEN TESTER

POSITION TESTER .. R:'.3:
F.:EAD TESTER
?TEST ~:

?TEST 4

CLOSE TESTEF.:

Are you surprised at the results? Remember that the current field is
relative-field position number 0. Also, remember that each INPUT causes
one field to be READ into the Apple, and advances the
position-in-the-file pointer to the beginning of the next field.

BYTE-ING Off MORE
Note: the following section is not for beginners, and sequential files
can be used perfectly well without a knowledge of the parameters discussed
here.

The DOS commands WRITE and READ can be used with a Byte parameter to
WRITE or READ information starting from any place in a text file -- if
you know where that place is. The trick involves knowing at exactly which
byte in the file you want to start (each byte contains one character's
ASCII code). To do this, you must know exactly how you have stored
information into the file. You must count all RETURNs, commas, spaces and
other characters in the file when figuring out where to begin. The
problem is even more difficult for WRITE, because you must also know where
to end.

The B parameter is an actual or absolute position in the file unless R is
specified. If R is given, the B parameter is the actual position within
the specified field.

The command
WRITE THISMONTH, B27
sets the position-in-the-file pointer to the twenty-eighth byte of the
file named THISMONTH (the first byte is number 0). Characters sent to the
disk by a subsequent PRINT command will replace an equal number of
characters that already existed in the file, beginning with the character
in the 28th byte.

This over-writing is not confined to the current field. If you PRINT
fewer than the number of characters remaining in the current field, you
will create two new fields: the field you just PRINTed, followed by the
tail-end of the field you were over-writing. If you PRINT more than the
number of characters remaining in the current field, you will over-write
some of the characters at the start of the next field: the current field
will then be longer, and the next field shorter than before.

69

It is also possible to ·WRITE into
an existing sequential text file.
un-written bytes will cause the
END OF DATA

bytes that are beyond the last byte of
An attempt to READ the intervening

message to be displayed, and your program will stop. See the discussion
of READ with the B parameter, for information on accessing sequential text
file fields that are not next to each other.

The syntax for this command is
WRITE f [,Bbl
where the B parameter specifies the file byte at which characters sent by
the next PRINT command will begin replacing file characters. The default
value of b is 0, the first byte in a file. Byte b is an actual, or
absolute, position within the file. The B parameter may specify a
position either before or after the current position-in-the-file pointer.
[Note: this command is also used with random-access files. See Chapter 8.l

Similarly, the command
READ LASTMONTH, B32
sets the position-in-the-file pointer to the thirty-third byte of the file
named LASTMONTH (again, the first byte is number 0). A subsequent INPUT
command will cause all characters in the next field (i.e. up to the next
RETURN character), beginning with the character whose ASCII code is stored
in the file's 33rd byte, to be READ into the Apple. If the 33rd byte does
not contain the first character of a field, only the remaining characters
in that field will be READ.

Syntax for this command is
READ f [,Bbl
where the B parameter specifies the file byte where the next INPUT or GET
command will begin reading characters. The default value of b is 0, the
first byte in a file. Byte b is an actual, or absolute, position within
the file. The B parameter may specify a position either before or after
the current position-in-the-file pointer. [Note: this command is also
used with random-access files, see Chapter 8. l

The following program sets the position-in-the-file pointer to byte 14
(the fifteenth byte) in file TESTER, which was created earlier by the
program MAKE TESTER. Then it WRITEs the string "APPLE COMPUTER". Note
the familiar sequence: OPEN, then WRITE and PRINT, and finally CLOSE.

5 r-:.c n

10 ~)$ = CHR:t- < 4) : F~EM CTF.:L -D

20 P~~ I NT D$.; !f GPEN TESTE~~ !i

3i.;:1 PF::INT ()$_; H ~.J~:ITE TESTER .. B1.4"

4fi P~: I NT 11 APPLE C:OMPUTE~: !I

~i(1 PF:INT 0$_; nc:LOSE TESTEF.: 11

With MON C, I, 0 in effect, RUN RETRIEVE TESTER to see how the previous
program has changed the file TESTER. As you can see, the field containing
APPLE COMPUTER has completely over-written the fields that contained TEST

70

3 and TEST 4, as well as the first character of the field that contained
TEST S. As there are now only four fields in all, the END OF DATA message
was displayed after the fifth INPUT command.

The following program sets a pointer to byte 18 in the file TESTER, just
modified by the preceding program. Then this program READs to the next
RETURN in the file. Again the familiar format: OPEN is followed by READ,
next come INPUT statements (or, in Applesoft, GETs may be used) and
finally the file is CLOSEd.

5 REM B'·r'TE ~~EADER

10 D$ = CHI''.$ (4): REM CTRL-D

20 PF:INT [)$_; "OPEN TESTER"

:3:0 PR I NT [:•$_;"PEAD TESTER· 818"
40 INPUT A$

50 PRINT [)$_; ''CLO:?E TESTEF.:"

Try to predict what you will see, before you RUN this program.

71

72

To better understand the contents of this chapter, it is suggested that
you first read Chapter 6, on sequential text files.

CONTROLLING THE APPLE VIA A TEXT FILE: EXEC
The DOS command EXEC is similar to RUN, except that the disk file used by
an EXEC command is a text file that contains commands or program lines,
including BASIC statements, as if they were typed at the keyboard.

To initiate a demonstration of some EXEC command abilities,
LOAD EXEC DEMO
from your System Master diskette and then SAVE it on a diskette that's not
write-protected. Leave the un-write-protected diskette in the drive,
since the program WRITEs a text file.

Next RUN the program. You should see the message

<< EXEC DEMO >>
THIS PROGRAM CREATES A SEQUENTIAL TE:x:T
FILE NAMED "[)O;ER" CONTAINING SEVERAL

STRINGS, EACH A LEGAL APPLE II COMMAND.

WHEN 'y'OU T'T'PE

E~<EC DO·' ER

THEN THE COMMANDS IN FILE D•YER TAKE

CONTROL OF YOUR COMPUTER. EACH COMMAND

WILL BE EXECUTED .JUST AS IF IT HAD BEEN

T'T'PED AT THE KEYBOARD. THE DOS MANUAL

DESCRIBES THE PROGRAM IN MORE DETAIL

< < HAPP'.-' EXECUTING :> :>
PRESS THE SPACE BAR TO MAKE THIS

PROGRAM CREATE THE FILE DO;ER.

IF YOU WISH TO STOP THIS PROGRAM NOJ..J..

YOU MA',.' PRESS THE ESC KE'T'.

Press the Apple's space bar, and after a brief pause you should see the
disk drive's IN USE light come on as the program writes the DO'ER file
onto the diskette. Now type
EXEC DO'ER
press the RETURN key. Your Apple will begin a solo performance based on
the script in the DO'ER file.

Here's a brief summary of the major things DO'ER does:
First DO'ER issues a MON C, I, 0 command, so you'll be able

to see what happens.
Second, a three-line program is written and saved on diskette

under the name NEW PROGRAM!! The program is then LISTed.
Now a FOR-NEXT loop is executed to take up some time, so

you get a chance to look at the screen before the
activity continues.

74

Next DO'ER uses the INT command to enter Integer BASIC,
LOADs the program COLOR DEMOS, and LISTs it.

At this point, DO'ER uses CALL -155 to enter the Monitor and
executes some machine-language instructions before using
the FP command to enter Applesoft.

From Applesoft a MON C,I,O command is executed, then
NEW PROGRAM!! is RUN, modified, LISTed (again a FOR
loop allows you to take a look at the screen) and SAVEd
using the name EVEN MORE RECENT PROGRAM!!

Lastly, the program NEW PROGRAM!! is DELETEd and the CATALOG
(including the new addition EVEN MORE RECENT PROGRAM!!)
is displayed.

And you won't even have to lay a finger on the keyboard (unless your
CATALOG has more than 18 entries, in which case you need to press the
space bar to see the balance of the CATALOG entries).

CREATING AN EXEC FILE
Here's a step by step example to illustrate how to create an EXEC file
named DOIT that contains the following commands:
LIST 20, 50
RUN AWAY
CATALOG

First create and SAVE an Applesoft program called AWAY to use in the above
demonstration:

5 REM Al~A'y'

10 PR I NT "AWA\-' At•JA'r' WI TH RUM 8',.'

GUM"

Next write and SAVE the following program, called MAKE EXEC, that will
create a text file called DOIT. When you later EXEC DOIT, the commands
your MAKE EXEC program has PRINTed into the DOIT text file will tell Apple
to RUN the AWAY program for you. Notice that the commands which are
PRINTed into the DOIT file, for later EXECing, are not preceded by a
CTRL-D.

5 REM MAf<E E:0<EC
10 D$ = CHR$ (4): REM CHR:H4) IS

CTRL-C•
20 PRINT D$.; "OPEN DOIT"
30 PRINT D$; "l·JRITE DOIT"
40 PRINT "LIST 20 .. 50 11

50 P!UNT "RUN Al·JAITlll

60 PIUNT "CATALOG"
70 PRINT D$.; "CLOSE DOIT"

After you have MAKE EXEC and AWAY both SAVEd on a diskette, type the
command
RUN MAKE EXEC
to create a sequential text file named DOIT.

75

Type the command
EXEC DOIT
to cause the commands in the file DOIT to be executed one by one, just as
if they'd been typed in from the keyboard. Again, notice that the
commands now being EXECuted were not preceded by a CTRL-D in the program
MAKE EXEC. First lines 20 through 50 from t-Oe program currently in memory
(probably the program MAKE EXEC) are LISTed. Then the program named
"AWAY" is RUN, and finally the CATALOG on the diskette is displayed.

CAPTURING PROGRAMS IN A TEXT FILI
Here's a far more useful example of using the EXEC command: it allows you
to capture program listings as text files. Such a program can be used for

* translating Integer BASIC programs into Applesof t
* renumbering parts of programs and EXECing them anywhere

into another program
* inserting favorite subroutines into programs from a

subroutine file on the diskette by EXECing the file
* "appending" one program to another
* repairing programs that have become partially unreadable

(you can capture the good portion in a text file, re-boot,
then EXEC the program portion back into memory)

The line numbers 2270 and 5130, following the LIST command in line 6 of
the CAPTURE program, should be replaced by the line numbers of the program
in memory that you wish to capture. The name of the sequential text file
containing the listing is LISTING.

i REM CAPTURE
2 D$ = CHR$ (4) : REM CTRL-0
3 PRINT 0$.• "OPEN LISTING"
4 PRINT 0$.• "WRITE LISTING"
5 POKE 33,30
6 LIST 2270,5i30
7 PRINT D$; "CLOSE LISTING"
8 TEXT END

We made the line numbers of this program very close together, so that you
can add these lines to a program already in memory, or anywhere within
your program that you have eight free line numbers. You could just as
easily put all the lines of CAPTURE above the highest numbered line in
your program.

CAPTURE creates a text file containing commands that are preceded by line
numbers. When you EXEC that text file, the numbered commands will not be
executed. Instead, just as if you had typed those lines in from the
keyboard, the lines are stored as a program in Apple's memory. Once
captured in a text file, a program can be modified and then EXECed back
into Apple's memory. Unlike LOAD or RUN, EXEC does not delete a program
that is already in memory. Using CAPTURE, you can capture a program in a
text file from one language, then EXEC the program back into another
language (of course, the program may not run without some changes -­
there's somewhat different s yntax for Integer BASIC and Applesoft). You

76

can also use EXEC this way to add new lines to an existing program in
memory. In fact, you can save a listing of CAPTURE in a text file named
LIST SAVER, say, and then EXEC LIST SAVER any time you wanted to add the
CAPTURE program to a program in memory.

CONVERTING MACHINE-LANGUAGE
ROUJINES TO BASIC
Here's another useful program that will take a machine-language routine
and convert it into a BASIC program portion which POKEs the
machine-language routine into memory. The program portion can be used as
part of either an Applesoft or an Integer BASIC program, to put the
machine-language routine into memory each time the BASIC program is run.

5 REM CODE-POKES WRITER
10 D$ = "": REM CTRL-D
15 PRI NT D$; "OPEN CODE-POKES"
20 PR I NT D$.• "(;ELETE CODE-POKES"
25 PRINT D$_; "OPEN CODE-POKES"
30 PRINT D$; "l~RITE CODE-POKES"
40 LINENUMBER = 7000
50 FOR PLACE = 768 TO 783
60 COUNTER = COUNTER + 1
70 IF COUNTER 1.0 THEN COUNTER

1

80 IF COUNTER < > 1 THEN 120
9f1 PRINT

100 PR I NT LI NENUMBER.;
11.0 LINENUMBER = LINENUMBER + 1
120 PRINT " POKE " .•PLACE.;", " .• PEEK

(PLACE)_; " : ";

1J:0 NDff PLACE
1J:5 PP H-ff
140 PfUNT D$; "CLOSE CODE-POKES"
150 END

When you use this program, the number in line 40 should be changed to
contain the line number of your BASIC program where the POKEing program
portion is to start. The FOR loop in line 50 should contain the starting
and ending decimal memory locations of the machine-language routine you
wish to convert.

Once you've typed in the program, RUNning it will create the text file
CODE-POKES. Now use the command
EXEC CODE-POKES
to place your machine-language-POKEing program portion into any other
program, beginning at the line number previously specified. The program
CODE-POKES WRITER will work with either Applesoft or Integer BASIC.

77

MAXFILES AND INTEGER BASIC PROGRAMS
An EXEC file must be used if you want to increase MAXFILES from inside an
Integer BASIC program without erasing your program. Here's how. Use the
procedures described above to create an EXEC file, let's cal l it FILE.EX.
The file FILE . EX should set HIMEM below the area that will be taken by the
increased MAXFILES (595 bytes per additional file), then delete the part
of the program that causes execution of the EXEC file.

FILE.EX should contain the following commands to allow for 5 files on a
48K system:

CLR
HIMEM: -28326
DEL U, 2(1
RUN

As shown in Table 2 of Appendix D, DOS usually sets HIMEM fo r a 48K system
to -27136; to allow for 2 more 595 byte buffers than usual, HIMEM mus t be
set to -27136 - (2 * 595) or - 28326.

The first lines of the program would be as follows; note tha t what appears
as CTRL-D is created by holding down the key marked CTRL while typing the
letter D.

1(1 PRINT "CTRL-D EXEC FILE.EX"
20 END
3(1 PRINT "CTRL-D MAXFILES 5"

EXEC-UTIVE SESSION
The usual syntax for the EXEC command is
EXEC f
where f is the name of a sequential text file containing BASIC commands or
program lines. Examples of this usage appear throughout the earlier
sections of this chapter . EXEC with this syntax causes the first field of
file f to be read into the Apple as if it were being typed on the
keyboard. When the first field's RETURN character is "typed", the Apple
attempts to execute the field' s contents as a BASIC command, or enter the
field's content s as a BASIC program line. The type of BASIC (Integer or
Applesoft) is not changed by EXEC unless the file contains an FP or INT
command. When execution has ceased on the first field, the second field
of file f is read into the Apple and treated similarly . The action comes
to a stop when the last field of file f has been read.

The EXEC command canno t be stopped by CTRL-C.

Only one EXEC file can be OPEN at any one time. If you are EXECing a
file, and one of the commands thus executed is another EXEC command, the
first EXEC file is immediately CLOSEd. Thereafter, it is the second
EXEC command that is being executed.

If a file being EXECed contains a command to RUN any program, EXEC will
wait patiently until the program ends. Then the next EXEC file command
will be executed.

78

However, if a program is RUNning while an EXEC file is OPEN, any INPUT
statement in the program will take the next field in the file being EXECed
as its response, ignoring the keyboard. Worse yet, if that response is an
immediate-execution DOS command, the command will be executed before the
program continues. Results can be very confusing.

If you interrupt a RUNning Applesof t program by typing CTRL-C while an
EXEC file is OPEN, the remainder of the EXEC file will usually not be
executed.

If any 'field of an EXEC file cannot be interpreted as a valid BASIC
command or program line, the message
SYNTAX ERROR
is generated, and the next field is read into the Apple. Thus, you can
EXEC~ text file, whether or not it contains BASIC statements (first
be sure you've SAVEd any program in memory). In MON C, I, 0 mode, this
can provide a crude but handy tool for quickly examining the contents of a
text file.

The EXEC command can also be used with the !_elative-field .E_Osition
parameter, in a way that is a bit different from POSITION's use of that
parameter. The syntax for this use is
EXEC f [,Rp]
where Rp specifies that file f is to be EXEC'd starting in the p-th field
of file f. Since EXEC always sets the position-in-the-file pointer to the
first character of the file, so the parameter Rp always indicates the p-th
field relative to the file's beginning. Thus p always corresponds to
the file's actual, or absolute, field. R0 indicates that EXECing begins
with the file's first field, Rl indicates EXECing begins with the second
field, etc.

Note that this is different from POSITION's use of the R parameter,
where R3 is a relative field only, and may indicate different actual
file fields at different times in a program.

EXEC MYFILE, Rf
generates an
END OF DATA
message if the R parameter specifies the second field beyond the file's
end. (If the first field beyond the file's end is specified, nothing
happens).

79

80

For a better understanding of the information presented in this chapter,
it is suggested that you first read Chapter 6, on Sequential files.

RANDOM-ACCESS FILES: HOW THEY WORK
Random-access text files are like a collection of equal-sized cells in a
honeycomb -- some cells may be full, others may be empty. Each "cell" is
called a record . When you create a random- access file, you must specify
the standard size for the records the file is to contain.

Unlike the fields in sequential files, which may be of almost any length,
the records in a random-access file are of specified fixed length . The
first time you WRITE to any particular record in a file, enough space is
set aside on the diskette for a complete, standard-length record, whether
or not the recor d is actually filled. So random- access files don't
necessarily represent an efficient use of space. However, since these
files are set up in such a regular fashion, it's fast and easy to retrieve
or modify information from any part of the file - - hence the name
"random-access" file.

Random- access files should be used in applications requiring fast access
to various part s of the file, or where individual pi eces of information in
the file need to be changed fairly often . For example, a random- access
file is particularly suitable for maintaining a mailing list.

Random- access files are created and retrieved in a manner very similar to
that used for sequential files. The main difference is that certain
commands have additional parameters:-.QPEN requires an L (Length of record)
parameter, while READ and WRITE each use an R (Record number) parameter .
Some sample programs will be presented and discussed before getting into
details on creating and retrieving random-access files and how the new
parameters work. More technical information about random-access text
files may be found in Appendix C. .

A SPECIFIC RECORD
How can you access a specific record in a random- access file? The
following pair of Applesoft programs illustrates how DOS allows you to do
this. The first program requests a name (N$), a telephone number (P$) and
a zip code (Z$), then sends them to record l of a file called MAILER:

10 REM MAKE MAILER
20 D$ = CHR$ (4) : REM CTRL-D
30 INPUT "NAME: "; N$
40 INPUT "PHONE: ".• P$
50 INPUT "ZIP CODE: "; Z$
60 PRINT D$; "OPEN MAILER,L200"
70 PRINT D$; "!<!RITE MAILER.. R:l"
80 PRINT N$: PRINT P$: PRINT Z$
90 PRINT D$; "CLOSE MAILER"

82

Line 20 places a CTRL-D in the variable D$, as usual.
Lines 30 through 50 request the information to be stored.

Do not type any commas or colons in your responses.
Line 60 OPENs a file called MAILER, with 200-byte long records.
Line 70 prepares for recording information in record 1.
Line 80 sends N$, P$ and Z$ to the diskette -- since record 1 was

specified in line 70, all three pieces of information
are recorded in record 1, separated by RETURNs.

Line 90 CLOSEs the file.

With MON C, I, 0 in effect, when the program is RUN you'll see:

NAME: At1'r' DOAKS
PHONE: (425) 555-1.01.0
ZIP CODE: 9501.4
OPEN MAILER.. L200
WRITE MA ILER .. R1.
AM'I DOAKS
(425) 555-1.01.0
9501.4
CLOSE MAILER

Record 1 of the file MAILER can be retrieved by this program:

10 REM RETRIEVE MAILER:A
20 D$ = CHR$ (4): REM CTRL-D
30 PRINT D$; "OPEN MAILER .. L200 "
40 PRINT D$; "READ MAILER,Ri"
50 INPUT Ni$, P'.1.$, 21.$
70 PRINT D$; "CLOSE MAILER"

When RUN with MON C, I, O, you'll see the following. As usual, the pair
of question marks indicates an INPUT with more than one response.

OPEN MAILER,L200
READ MA ILER.. Ri
?AMY DOAKS
??(425) 555-1.0:10
??95014
CLOSE MAILER

And here is a slightly different program to retrieve record 1 of MAILER.

10 REM RETRIEVE MAILER:B
20 D$ = "": REM QUOTES CONTAIN

CTRL-D
30 PRINT D$_; "OPEN MAILER.. L200"
40 PRINT D$_; "READ MAILER, Ri"
50 INPUT Ni$

83

60 INPUT P:1$
70 INPUT Z:1$
80 PRINT D$; "CLOSE MAILER"
90 END

MULTIPLE RECORDS
The program that created the random-access file MAILER wrote to a single
record in the file, saving three different pieces of information separated
by RETURNs. The next program demonstrates writing to several records: in
particular, record numbers 12 through 15 of a random-access file called
RA-FILE.

5 REM MAKE RA-FILE
:10 D$ = CHR$ (4): REM CTRL-D
20 PRINT D$; "OPEN RA-FILE"
30 PRINT D$; "DELETE i;::A-FILE"
40 PRINT D$; "OPEN RA-FILE.· L30"
50 FOR I = :12 TO :15
60 PRINT D$; "WRITE RA-FILE, R"-• I
70 PRINT "NAl'lE ADDRESS ";I
80 NEXT I
90 PRINT D$; "l·JRITE RA-FILE, R:13:"
:100 PRINT "DOS VERSION 3:. 2"
:1:10 PRINT D$; "CLOSE RA-FILE"

Line 10 sets D$ to CTRL- D.
Lines 20 and 30 make sure RA-FILE is a new file
Line 40 OPENs the file RA-FILE, whose records will each be

30 bytes in length.
Lines 50 through 80 create a loop that WRITEs the information

NAME ADDRESS
followed by the record number, for records 12 through 15
Note that you must specify each record in a new WRITE
command, before having PRINT send characters to that
record.

Lines 90 and 100 change the information in record 13 to the
text given in line 100's PRINT command.

Line 110 CLOSEs the random-access file RA-FILE.

If MON C,I,O is in effect when the program is RUN, you'll see the
following:

OPEN RA-FILE
DELETE RA-FILE
OPEN RA-FILE.. L30
WRITE RA-FILE, R:12
NAME ADDRESS :12
WRITE RA-FILE.. R:13
NAME ADDRESS :13
WRITE RA-FILE.· R:14
NAME ADDRESS :14

84

WRITE RA-FILE, Ri5

NAME ADDRESS i5
WRITE RA-FILE.. Ri3

DOS VERSION 3. 2
CLOSE RA-FILE

In a similar fashion, you can READ information from a selected record or
records of a text file. The next program retrieves records 12 through 15
of the file called RA-FILE, trying, on line 60, to find which record{s)
contains the letters "DOS" as the first three characters.

5 REM RETRIEVE RA-FILE
i0 D$ = CHR$ (4): REM CTRL-0

20 PRINT 0$; "OPEN RA-FILE, L30"

30 FOR J = i2 TO i5

40 PRINT D$; "READ RA-FILE, R"; ,T

50 INPUT A$

60 IF LEFT$ <A$.• 3) = "DOS" THEN

PRINT "RECORD "; ,T; " !-!AS CHA

NGED."
70 NE>ff ,T

80 PRINT 0$.o "CLOSE RA-FILE"

Line 10 sets up CTRL-D in D$.
Line 20 OPENs the text file RA-FILE, whose records are 30-bytes

long (that's what we specified when the file was
created in an earlier program, remember?).

Lines 30 through 70 READ records 12 through 15 of RA-FILE.
Note that you must specify each record in a new READ
command, before a subsequent INPUT will read characters
from that record. In line 50, each record comes in from
the disk as an ASCII string terminated by a RETURN.
Line 60 checks the 3 leftmost characters of the INPUT
string A$ from record r, to see if the word "DOS" is
there. If it is, the message "RECORD r WAS CHANGED."
is printed and the search continues.

Line 80 closes the file.

Here's what you'll see when you RUN the program, if MON C, I, 0 is in
effect:

OPEN RA-FILE.. L30

READ RA-FI LE.. Ri2
?NAME ADDRESS i2

READ F:A-FILE, Ri3

?DOS VERSION 3. 2
RECORD i3 l>JAS CHANGED.

READ l':A-F I LE.. Ri 4

?NAME AC•DRESS i4

READ l':A-FILE.. Ri5

?NAME ADDRESS i5

CLOSE RA-FILE

85

Notice that when the file was retrieved only records that had been written
to were examined. If you had asked for record 8 in RA-FILE, you would
have received the
END OF DATA
message, since no information had been written to that record of the file.

Similarly, had you tried to INPUT more than one field from any of the
existing records you would have been given the same message: each of
records 12 through 15 contains only one field.

A DEMONSTRATION: THE RANDOM PROGRAM
Last but by no means least, the System Master diskette contains a program
called RANDOM that uses a random-access text file to demonstrate a small
inventory control scheme. And by small we mean small: the program can
handle at most 9 parts. This keeps the program simple. The Apple, of
course, is capable of handling thousands of parts in an inventory .

First the program copies itself and the random-access text file APPLE
PROMS used to keep track of the inv entory , then it automatically RUNs the
program for you. You can list one or all items in the inventory. You can
also change items, either one at a time or all at once. Here's how it
works. Remember to press the RETURN key each time you complete a
respons·e.

1) From the System Master,
RUN RANDOM
and you should see the mes s age

THIS DEMONSTRATION WILL NOT E:x:ECUTE ON

A WRITE-PROTECTED DISKETTE SUCH AS

YOUR DOS S'r'STEM MASTER <VEl':SION 3. 2).

FOR YOUR CONVENIENCE, PROVISIONS HAVE

BEEN MADE TO COP'T' TH IS PROGRAM AND IT·' S

DATA TO ANOTHEF; DISKETTE.

DO YOU lHSH TO DO THIS Nm.J? (Y OR N) 'T'

If you type N for "no" in response to the above message,
you'll find yourself back in Applesoft.

2) Press Y FOR "yes". You'll see the message

NmJ READING DATA. ..

Followed by the message

INSERT AN INITIALIZED DISKETTE.. THEN

PRESS THE RETUl':N KE'r' TO BEGIN TRANSFER.

3) Remove the System Master dis kett e , and place a
non-write-protected diskette i n the drive, then press
the RETURN key. You'll perhaps catch a glimpse of
the message

86

and then the program will begin execution.

4) Now you should see this:

COMMAND

LIST
CHANGE
EXIT
CHOOSE

APPLE PROMS
NUMBER

j_

2
3

NUMBER (i - 3) :1.

Press 1 and you should see this message:

PART NUMBER :1.-9 (0=ALL) 0

5) Press 0, to get a list of all "parts" in this "inventory
system" and you'll see

PART# NAME SIZE IN STOCK

i PARALLEL PRINT 256 500

2 COMMUNICATIONS 256 :1.250
3 <NOT AVAILABLE) 256 0

4 <NOT AVAILABLE) 256 0

5 DISK BOOT 256 432
6 STATE MACHINE 256 460
7 SERIAL PRINTERi 256 878
8 SERIAL PRINTER2 5i2 74:1.
9 CENTRONICS 256 :1.290

PRESS THE RETURN KE'T' TO CONT I NUE.

When you're ready to return to the list of options, press
the RETURN key.

6) Try out the various program options. Choice 1 allows you
to list parts by part number, one at a time, as well as
all at once.

Choice 2 allows you to change any or all part names and
descriptions. For example, suppose part 3 should be
named COSMIC GLUE, size 56, with 1234 in stock. Here's
how to revise the entry for part 3:

select option 2, CHANGE
select part number 3
the old part name is displayed, with the cursor at its

start, to allow you to enter the new name; when you

87

press the RETURN key the cursor will move to the right
and perform similarly for part size and quantity

to use the currently existing name or size or quantity,
just press the RETURN key by itself,

Choice 3 will stop the program.

WRITE-ING AND READ-ING RANDOM-ACCESS TEXT FILES
When used with random-access files, the CLOSE command works exactly as it
does with sequential files (see "OPENing and CLOSEing Sequential Files" in
Chapter 6). However, the syntax for OPEN has an additional parameter, the
L parameter, which is reguired.

OPEN f ,Lj [,Ss] [,Dd] [,Vv]

The "L" stands for "Length-of-record"; the number j indicates how many
bytes (characters and digits) are to be allotted to each record in the
random-access file you're creating (or, if you're retrieving a file, the
number that were allotted when the file was created). If the L option is
omitted, j is assigned the default value of 1. The number j must be in
the range 1 through 32767.

When you OPEN a file prior to READing, if you specify a different Length
parameter, than you specified when you OPENed prior to WRITEing the
file, DOS will blindly use the new Length parameter to calculate record
positions within the file. You~ll have to keep detailed written
documentation on the structure and contents of your files (some
programmers keep such information in record 0 of the file) . It's helpful
to always include the Length parameter in each file's~· with such
names as
RAND FILES: L20
STOCKLISTS-Ll00
DIRECTORIES(L50)
There is no way to find the length of a record in a random-access file:
Y£!!. must make this information part of your documentation.

Records should never be longer than the number of bytes specified by the L
parameter: records may be partially over-written or combined with
confusing results.

WRITE and READ each have an R parameter, to be used when creating or
retrieving particular records in random-access files.

WRITE f [,Rr]
READ f [,Rr]

Examples: WRITE LEGIBLY, R3,
READ FAST, Rl3

88

The Rr (~ecord) parameter is used to create (with WRITE) or retrieve
(with READ) the rth record of the file. The default value of r is 0,
specifying the first record of a file.

Using CTRL-C to stop a READ in Applesoft causes a string of REENTERs to be
generated: press the RESET key instead.

In some respects, each separate record in a random-access text file may be
treated as a short sequential file. WRITE and READ can be used with a
Byte parameter in addition to their R parameter. The Byte parameter
specifies the beginning byte of the specified record, for the next PRINT
(after WRITE) or INPUT or GET (after READ).

WRITE f [,Rrl [,Bbl
READ f [,Rrl [,Bbl

If specified, the B (_!!yte) parameter causes WRITEing (or READing) to
begin at the b-th byte of the specified record. The default value of b is
0, the first byte of a record. The B parameter may specify a position in
the record either before or after the current position-in-the-file
pointer. Using the B parameter necessitates a thorough, detailed,
byte-by-byte knowledge of the contents of each record in the file.

Once READ or WRITE has moved the position-in-the-file pointer to a
particular record, POSITION can also be used to move the pointer ahead
(only) to further relative-field positions within the record. However,
POSITION cancels either WRITE or READ mode (without changing the
position-in-the-file pointer), so another WRITE or READ command (this time
with no parameter) is necessary to re-instate that mode.

Details on how information is stored on the diskette in general, and in
random-access files in particular, may be found in Appendix C.

89

90

MACHINE LANGUAGE FILES
DOS allows you to store on diskette, and retrieve from diskette, the
information in your Apple !I's memory. You have already seen the DOS
commands SAVE, LOAD and RUN: these commands deal with the contents of
Apple's program memory, interpreted as commands in BASIC programs. The
DOS commands discussed in this chapter -- BSAVE, BLOAD and BRUN -- perform
similar functions, but they deal with the contents of~ portion of
Apple's memory, in its uninterpreted, raw binary-and-hexadecimal form.

The B before each of the following commands stands for a _!!inary file; a
B also precedes the name of binary files in the CATALOG. A binary file is
just an exact, bit-for-bit copy of the information that was stored in a
specified range of Apple memory locations. Those locations may have
contained a machine-language program, binary data, or a bit-mapped
"picture" from Apple's high-resolution graphics screen.

BSAVE
The BSAVE command creates a file named f and stores all the contents of a
segment of memory. The syntax is
BSAVE f ,Aa, Lj [,Ss] [,Dd] [,Vv]
where as usual the S, D, and V parameters stand for slot number, drive
number, and volume number. Note that the A and L parameters are not
optional.

The A parameter specifies the starting ~ddress (in either decimal or
hexadecimal code) of the memory portion to be stored on diskette. A
dollar sign ($) must precede an address expressed in hexadecimal. If
the A parameter is less than 0 or g·reater than 65535, a
SYNTAX ERROR
message is displayed. Therefore, equivalent negative addresses may not
be used with this command. Within the range 0 through 65535, no error
message is generated if the A parameter specifies a starting memory
address that does not correspond to actual, installed memory chips. In
practice, it is not useful to specify an A parameter greater than the
maximum memory address in your Apple (49151 or $BFFF on a 48K system).

The L parameter specifies the !,_ength, in bytes, of the memory portion to
be stored. If the L parameter is less than 0 or greater than 65535, a
SYNTAX ERROR
message is generated. If the L parameter is 0 or in the range 32768
through 65535, a
RANGE ERROR
message is generated. 32767 is the greatest number of bytes that can be
stored in a single field on the diskette. If you wish to store more than
32767 memory locations, use two BSAVEs. Within the range l through 32767,
no error message is generated if the L parameter specifies a range of
memory addresses, not all of which correspond to actual, installed memory
chip. In practice, it is not useful to specify a range of memory
addresses extending beyond the maximum memory address in your Apple (49151
or $BFFF on a 48K system).

92

These examples each create a file named PICTURE containing an image of the
second high-resolution graphics area of the Apple's memory. They are
operationally identical, but their starting address and length parameters
are given in different forms.

BSAVE PICTURE, A$4000, L$2000
BSAVE PICTURE, Al6384, L8192
BSAVE PICTURE, Al6384, L$2000
BSAVE PICTURE, A$4000, L8192

BLOAD
The BLOAD command returns the contents of a Binary file to your Apple II's
memory. BLOAD does not erase a BASIC program in memory, unless the data
is BLOADed into the particular portion of memory containing your program.

The syntax is
BLOAD f [,Aa) [,Ss) [,Dd) [,Vv)
where the S, D, and V paramet,ers are as usual. If the A parameter is
used, then the Binary file's contents replace a portion of the existing
contents of Apple's memory, beginning at address a. If the A parameter is
not used, the file's contents are returned to the same Apple memory
locations whose contents were originally BSAVEd. See BSAVE for a complete
discussion of the A parameter.

Assume the binary file PICTURE contains a high-resolution picture. Either
of these examples places the picture into the first high-resolution
graphics area of the Apple's memory:
BLOAD PICTURE, A8192
BLOAD PICTURE, A$2000
Either example also clobbers the RAM version of Applesoft.

Note: a machine-language program may no longer be executable
if it is moved to a memory location different than the
one from which it was saved.

BRUN
The syntax of the BRUN command is the same as for BLOAD:
BRUN f [,Aa) [,Ss) [,Dd) [,Vv)
The Binary file f should be a machine-language program.

First BRUN does a BLOAD. If the A parameter is given, the file's contents
are placed into Apple's memory beginning at location a. If the A
parameter is not used, the file's contents are returned to the same Apple
memory locations whose contents were originally BSAVEd. See BSAVE for a
complete discussion of the A parameter.

After BLOADing the file, BRUN does a machine language jump (JMP) to
location a. If the file was a machine-language program, this begins
execution of that program.

93

THE RWTS SUBRC>llmtE
Normally, user access to and from the DISK II is restricted to the use of
DOS. However, another method of accessing the DISK II is available to
machine language programmers. You may skip this section if you're not
familiar with machine language.

The DISK II can be accessed directly from machine language through the use
of the RWTS subroutine, which is part of the DOS. The "RWTS" stands for
"Read or Write a Track and Sector". In the following explanation,
a;-y numbe-;s prece-;ded by $-;;:re hexadecimal numbers.

Every diskette initialized by the DISK II drive is separated into 35
tracks, numbered 0 to 34. These tracks may be thought of as grooves on a
phonograph record, except that they are not connected with each other.
Basically, the tracks are arranged in separate concentric circles, with
the large hole in the center of the diskette forming the common center of
the circles. Track 0 is on the outer edge of the diskette, while track 34
is nearest the center. The disk drive has a "head" that acts very much
like the needle on a record player, except that the head on the disk drive
is magnetic. This head moves to different tracks on the diskette, where
it either reads information off of the diskette, or writes information
onto the diskette.

Each track on the diskette consists of 13 sectors. Sectors are
pre-defined groupings on each track, that allow the user to work with
single blocks of 256 bytes, rather than with the entire 3328 bytes that
fit on one track. The sectors within a track are individually numbered,
consecutively, 0 to 12 around the diskette. As the diskette spins, each
sector will pass underneath the head, at which time the head may write to
or read from that sector. Each sector consists of two portions: the
address field and the data field. The address field contains information
concerning which track the head is on, which sector is about to spin past
the head, and the volume number of the diskette. The data field contains
an encrypted form of the actual 256 bytes of data which were stored on
that sector.

The "Read or Write a Track and Sector" subroutine (referred to as the RWTS
subroutine), allows the user to write information to, or read information
from, any track and sector on the diskette, via machine language. In
order to use the RWTS subroutine, the user must first create an !OB
(Input/Output control Block) table, and an accompanying "Device
Characteristics Table". The !OB tells the RWTS subroutine which slot and
drive number the disk drive will be in, which volume number to expect on
the diskette, which track and sector to access, and whether to read from
or write to the diskette. The Device Characteristics Table provides some
information to the RWTS subroutine that is necessary to operate the Apple
DISK II.

To use the RWTS subroutine, the user must set up the !OB and the Device
Characteristics Table somewhere in memory. A "controlling subroutine"
must be written and stored in memory. The subroutine must JSR to the
starting address of the RWTS subroutine (at location $3D9). When the RWTS
subroutine is jumped to, the A and Y registers must contain the address of
the starting location of the IOB. The A register must contain the high

94

address byte, and the Y register the low address byte. The format of the
IOB is given in Table 3, at the end of this section. Table 4 gives the
format of the Device Characteristics Table.

Here is an example of how to use the RWTS subroutine. The sample IOB,
Device Characteristics Tables, and a controlling subroutine will all be
loaded into memory just after location $C00.

The following controlling subroutine will load the A and Y registers with
the address of the starting location of the IOB, and tben jump to the RWTS
subroutine.

$C00-
$C02-
$C04-
$C07-
$C08-

A9 0C
A0 0A
20 D9 03
60
00

LDA
LDY
JSR
RTS
BRK

11$0C
lt$0A
$03D9

Load A register with $0C
Load Y register with $0A
Jump to the RWTS subroutine

The following IOB is one that you would use to access slot 6, drive 1, to
write 256 bytes of memory starting at location $2000, onto track 18,
sector 6 of the diskette:

Location
$C0A
$C0B
$C0C
$C0D
$C0E
$C0F
$Cl0
$Cll
$Cl2
$Cl3
$Cl4
$Cl5
$Cl6
$Cl7
$Cl8
$Cl9
$ClA

Code
01
60
01
00
12
06
20
0C
00
20
00
00
02
00
00
60
01

Purpose
IOB type indicator, must be $01
Slot number times 16
Disk drive number
Expected volume number
Track number
Sector number
Low-order byte of Device Characteristics Table
High-order byte of Device Characteristics Table
Low-order byte of data buffer starting address
High-order byte of data buff er starting address
Unused
Unused
Command code, $02 = write
Error Code
Actual volume number
Previous slot number accessed
Previous drive number accessed

The following Device Characteristics Table must be included, we'll place
it at location $C20, just after the IOB. Locations $Cl0 and $Cll in the
IOB above point to the address of the Dev ice Characteristics Table's
starting location.

Location
$C20
$C21
$C22
$C23

Code
~
01
EF
D8

Purpose
Device type code (put a $00 here)
Number of phases per track (put a $01 here)
Time count (put a $EF here)
Time count (put a $D8 here)

95

When you have loaded the !OB at $C0A, the Device Characteristics Table at
$C20, and the controlling subroutine to load the A and Y registers at
$C00, then
C00G
or
CALL 3072
will cause the entire routine to execute.

TABLE 3: FORMAT OF !OB

Purpose

IBTYPE Tells the RWTS subroutine what type of !OB this
is. Should be a $01 . No other type codes are
currently def ined.

2 IBSLOT Must contain the number of the slot times 16,
in which the disk drive's controller card is
located . For example, if you want to access
slot #6, the value $60 must be stored in this
location.

3 IBDRVN Must contain the number of the disk drive to be
accessed -- either $01 or $02.

4 IBVOL The volume number of the diskette to be
accessed must be stored here. Volume $00 will
match the volume number assigned to any
diskette.

5 IBTRK The number of the track (0 to 34) to be
accessed is stored here. Hust be within the
range $00 to $22.

6 IBSECT The number of the sector (0 to 12) to be
a:cessed is stored here. Must be within the
range $00 to $0C.

7&8 IBDCTP These two bytes must contain the address of the
starting location of the Device Characteristics
Table {see below). Byte 7 must contain the
low-order byte of the address, and byte 8 must
contain the high-order byte.

9&10 IBBUFP Bytes 9 and 10 must contain the address of the
starting location of the "data buffer". The
data buffer is a 256-byte long section of
memory upon which the RWTS subroutine will
operate. If you are writing onto the diskette,
the information in the data buffer will be

96

11&12

written onto the diskette. If you are reading
from the diskette, the information that comes
off of the disk will be stored in memory at the
location of the data buffer. 256 bytes is both
the minimum and the maximum amount of inform­
ation that can be read or written by the RWTS
subroutine.

Unused

13 IBCMD In this byte is stored the command code that
tells the RWTS subroutine exactly what to do.
The values that can be stored in byte 13 are:
$00 -- Null command. Does nothing but start

the disk drive and position the head.
$01 -- Read the entire 256 bytes stored on the

diskette at the specified track and sector,
and store them in memory at the location of
the data buffer.

$02 -- Write the next 256 bytes stored in
memory at the location of the data buffer on
to the diskette at the specified track and
sector.

$04 -- Format the diskette. When a diskette is
formatted, self-synchronizing nibbles are
written on every track and sector on the
diskette. Because all of the diskette is
formatted, the values in bytes 5 and 6 are
ignored. All of a formatted diskette is
available for use; there is no DOS, or
anything stored on the diskette until the
user puts something there.

14 IBSTAT This location will contain the code number for
any error that may be encountered during
execution. If the RWTS subroutine returns with
the carry flag clear, no error has occurred.
If it returns with the carry flag set, this
byte indicates what type of error has occurred.
$10 -- Diskette is write-protected, and cannot

be written to.
$20 -- Volume mismatch error. The volume

number of the diskette found was different
than the volume specified in byte 4.

$40 -- Drive error. Something unusual is
happening.

$80 -- Read error. The RWTS routine was, after
48 repeated attempts, unable to read either
the address field or the data field. If the
data field for the specified sector has
rn~ver had anything written on it, then a
read error will result, because there is
nothing to read.

15 IBSMOD The volume number of the diskette that is
actually found will be stored in this location.

97

TABLE 3: FORMAT OF IOB [continued]

Byte/f Name Purpose

16 IOBPSN This byte must contain the slot number times 16

of the slot that was accessed most recently.
For example, if you previously accessed a disk
drive in slot 5, store the value $50 here. If
there is no controller in the specified slot,
the disk will hang.

17 IOBPDN This byte must contain the number of the disk
drive that was accessed most recently -- a $01
or $02.

Table 4: FORMAT OF DEVICE CHARACTERISTICS TABLE

By tell
1

2

3&4

Name
DEVTPC

PPTC

MONTC

Purpose
Device type code, telling what type of device
this is. A $00 should be stored in this byte
for use with a DISK II.

Number of phases per track. A $01 should be
stored here.

Motor on time count complemented, in 100
micro-second intervals. A $EF should be in
byte 3, and a $D8 in byte 4, for use with a
DISK II.

98

SELECTING 1/0 DEVICES: IN#, PR# AND OTHER STUFF
There are various ways in which information can be used as input or output
for your Apple computer. Very often the keyboard serves as a source of
input. Usually the Apple uses a TV screen for output, but any accessory
or peripheral connected to a controller in one of the seven Apple
accessory slots can be used for input or output using the IN# and PR#
commands.

Examples:
IN# 6 obtains subsequent input from the device controlled from

slot #6. Note: if slot #6 contains a disk controller
card, this command will cause DOS to be booted. If no
dev ice is in slot 116, the sys tern may "hang". Press the
RESET key to recover.

IN# 0 obtains subsequent input from the keyboard (not slot #0),
instead of a peripheral device.

PR# transfers output to the device controlled from slot #1,
usually the printer. Note: if no device controller
card is installed in slot fll, the system may "hang"
and you'll have to press the RESET key to recover.

PR# 0 returns output to the TV screen (not to slot #0).

The syntax for the commands is
IN# s
or
PRfl s
where s specifies the slot to use. What happens depends on s:

value of s

less than 0

0

1 through 7

8 through 16

17 through 65535

greater than 65535

result

SYNTAX ERROR

re-establishes usual device (for IN#, input from
the keyboard, for PR#, output to the TV screen)

transfers to device controlled from the specified
slot (boots DOS if a disk controller card is in
that slot)

SYNTAX ERROR in deferred-execution mode;
the system hangs in immediate-execution mode

RANGE ERROR

SYNTAX ERROR

The command IN# 0 re-establishes input from the keyboard; PR# 0
re-establishes output to the TV screen.

With DOS in effect, the IN# and PR# commands may be used in immediate
execution mode in the usual way (see your BASIC manuals). But when the·

100

are issued by lines in a program, IN # and PR# must take the form of DOS
commands such as
10 D$ = 1111

: REM CTRL-D
20 PRINT D$; "PR# l"
30 PRINT D$; "INll 2"

When DOS is not in effect, the IN/I and PR/I commands set the contents of
the ~ Monitor Input and Output registers to select the desired input
and output devices.

When DOS~ in effect, the contents of the Apple Monitor Input and
Output registers are set to select DOS, while the contents of the DOS
Input and Output registers are set to select the desired input and output
devices. The following paragraphs describe what happens each time a
character leaves or enters the Apple.

When the Apple sends an output character, the Apple Monitor Output
register directs that character to DOS. If the character is to be sent on
(because it is not part of a DOS command), DOS does a fast two-stage
switch:

1. First, DOS replaces the contents of the Apple Monitor
Input and Output registers with the contents of the DOS
Input and Output registers. Then it sends the character
out to the device now selected by the contents of the
Apple Monitor Input and Output registers.

2. Next, DOS re-connects itself by again placing the
pointers to DOS in the Apple Input and Output registers.

Similarly, each time the Apple asks for an input character, the Apple
Monitor Input register directs that request to the DOS. Once again, DOS
does its fast two-stage switch:

1. First, DOS replaces the contents of the Apple Monitor
Input and Output registers with the contents of the DOS
Input and Output registers. Then it obtains an input
character from the device now selected by the Apple
Monitor Input and Output registers.

2. Next, DOS re-connects itself by again placing the
pointers to DOS in the Apple Input and Output registers.

When DOS is in effect, DOS intercepts all input characters from the input
device before they reach Applesoft or Integer BASIC or the Monitor. That
is why IN/I and PR#, when typed on the keyboard as immediate-execution
commands, can be trapped and used by DOS to change the DOS Input and
Output registers.

Similarly, DOS intercepts all output characters from the Apple before they
reach the output device (but after they have affected the Apple Monitor
Input and Output registers). That is why IN/I and PR#, if issued from
within a program but not in PRINTed DOS commands, can disconnect DOS by
changing the Apple Monitor Input and Output registers before the commands
ever get to DOS. Because the entire contents of the Apple Monitor Input

101

and Output registers are replaced each time DOS attempts to send or
receive a character, DOS will usually re-connect itself if it was not
disconnected at both Input and Output registers simultaneously.

If you execute a PR# command from within a program, with a program line
such as
50 PR/I 1
then DOS will be partially disconnected and unable to intercept subsequent
output. DOS is still connected for input, and the next attempt to obtain
any input character will cause DOS to re-connect itself for both input and
output.

The same situation occurs with the use of IN# inside programs when DOS is
in effect. A program line such as
60 IN// 1
will disconnect DOS for subsequent input. DOS is still connected for
output, and the next attempt to send out a character (even a return or a
prompt character) will cause DOS to re-connect itself for both input and
output. To avoid such conflicts and allow DOS to manage the Input and
Output registers, issue PR# and IN# commands in immediate-execution mode,
or as DOS commands in program lines such as those mentioned earlier:
10 D$ = "": REM CTRL-D
20 PRINT D$; "PR/I l"
30 PRINT D$; "INll 2"

The CTRL-D character tells DOS that the following output characters are a
DOS command.

102

TABLE 1: APPLE MONITOR INPUT AND OUTPUT REGISTERS

Monitor Input Register: Locations 56-57 ($38-$39)

When Register
contents

are set by

RESET
0 CTRL-K [Note l]
IN/10 [Note 2]

s CTRL-K [Note l]
IN/ls [Note 2]
[where s>0]

To the
value

-741
($FD1B)

49152 + s*256
($Cs00)

Then subsequent input
comes from

Monitor Input Routine
from Apple keyboard

Slot /Is
If slot /Is contains disk

controller, then boot DOS

DOS boot -8626 + Top of mem. DOS
(-$21B2 +$Top of mem.)

Monitor Output Register: Locations 54-55 ($36-$37)

When Register
contents

are set by

RESET
0 CTRL-P [Note l]
PR/10 [Note 2]

s CTRL-P [Note l]
PR/ls [Note 2]
[where s>0]

To the
value

-528
($FDF0)

49152 + s*256
($Cs00)

Then subsequent output
goes to

Monitor Output Routine
to TV screen

Slot /Is
If slot #s contains disk
controller, then boot DOS

DOS boot -8577 + Top of mem. DOS
(-$2181 +$Top of mem.)

Note 1. The commands s CTRL-K and s CTRL-P are Monitor commands. To
type CTRL-K (which does not appear on the TV screen), type K while
holding down the CTRL key.

Note 2. When DOS is in effect, this command will affect the contents of
the Apple Monitor register only if the command is issued as an instruction
in a stored program and not in a PRINT CTRL-D instruction.

Note 3. In addition to the commands mentioned in Table I, directly
POKEing appropriate values into the Apple Monitor register locations can
also be used to select input and output devices, or to re-connect a
disconnected DOS.

103

TABLE 2: DOS INPUT AND OUTPUT REGISTERS

DOS Input Register

When Register
contents

are set by

DOS boot
RESET 3D0G
INll0 [Note 4J
PRINT D$; "IN#0"

[Note SJ

IN #s [Note 4J
PRINT D$; "!Niis"

[Note SJ
[where s >0 J

DOS Outpuc R~ister

When Register
contents

are set by

DOS boot
RESET 3D0G
PR/10 [Note 4J
PRINT D$; "PR/10"

[Note SJ

PR/ls [Note 4J
PRINT D$; "PR/ls"

[Note SJ
[where s>0 J

To the
value

-741
($FD1B)

491S2 + s*2S6
($Cs00)

To the
value

-S28
($FDF0)

491S2 + s*2S6
($Cs00)

Then subsequent input
comes from

Monitor Input Routine
from Apple keyboard

Slot lls
If slot /is contains a
disk controller, then
reboot DOS

Then subsequent output
goes to

Monitor Output Routine
to the TV screen

Slot lls
If slot !is contains a
disk controller, then
reboot DOS

104

Note 4. When DOS is in effect, this command will not affect the
contents of the DOS Input and Output registers if the command is issued as
an instruction in a stored program and not in a PRINT CTRL-D instruction.
If a program line such as
120 PR/13
is executed, the contents of the ~ Monitor Output register will be
changed, leaving DOS partially disconnected until the next input.

Note 5. In this command, it is assumed that the string-variable named D$
has been assigned the character control-D, or CTRL-D. This character,
which does not appear on the screen, is produced by typing D while
holding down the CTRL key.

Note 6. No matter what input or output device is selected by the DOS
Input and Output registers, input can also be received from the disk and
output can be sent to the disk.

Note 7. In addition to the commands in Table II, directly POKEing the
appropriate values into the DOS Input and Output register locations can
also be used to select input and output devices. However, the specific
memory locations of the DOS Input and Output registers change with
different system memory sizes and with different versions of D£ S· For
this reason, a special procedure exists for changing the contents of the
DOS Input and Output register locations. It is a two step procedure:

a) Change the ~ Monitor Input and Output register
locations to the values you wish the DOS Input and
Output registers to contain. (This may be done by
directly POKEing the Apple Monitor register locations
or by executing IN# and PR# non-DOS instructions in a
stored program.)

b) CALL 1002 (from the Monitor, you would type $3EAG).

After this CALL, DOS will be re-connected via the Apple
Monitor registers, and the previous contents of the Apple
Monitor Input and Output registers will appear in the DOS
Input and Output register locations. This CALL can also
be used to re-connect DOS .!!.!!Y. time your program needs
to disconnect DOS for awhile. See the program on page
151 for an example using this technique.

Note 8. The Monitor commands s CTRL-K or s CTRL-P , when typed on the
keyboard, are not recognized by DOS: they affect the Apple Monitor Input
or Output registers directly.

105

INTEGER BASIC CHAIN
Certain applications are most easily implemented by using a series of two
or more programs which are LOADed and RUN sequentially. In such
circumstances, the second program often needs to use the values of
variables and arrays developed by the first program. The usual RUN
command~ the first program's v~riables and arrays when it loads
the second program. In Integer BASIC (but not Applesoft) the DOS
command CHAIN allows you to load and run a Be;;"ond program without
erasing t he first program's variables and arrays.

Suppose you've been using an Integer BASIC program called PART ONE. The
command
CHAIN PART TWO
will load and run the Integer BASIC program called PART TWO without
clearing the values of any variables used in the program PART ONE. The
CHAIN command may be issued in immediate-execution mode as shown above, or
from within the last lines of the PART ONE program as a DOS command:

20010
200 20

D$="": REM CTRL-D
PRINT D$; "CHAIN PART TWO"

The syntax for the command is familiar:
CHAIN f [,Ss] [,Dd] [,Vv]

APPLESOFT CHAIN
The CHAIN command works only with Integer BASIC, but if you do not need
to pass variables, it is easy to link Applesoft programs to load and run
in sequence . In the first program, j ust include a last line such as
20000 PRINT CHR$ (4); "RUN PART TWO"
When this line is executed, it will start up the second program (where the
second program is named PART TWO). In the process, the fir s t program and
all its variables are erased.

A different pr.ocedure must be used in order to load and run a series of
Applesof t programs without erasing earlier values of variables and
arrays. To chain in Applesoft, you will need to use the machine-language
program called CHAIN that is on the DOS version 3.2 Sys tem Master
diskette.

To chain from a program called PART ONE to a program called PART TWO, you
must have the CHAIN program on the same diskette with the program PART TWO
(see next page for instructions). Then, simply insert these two lines as
the last two lines to be exe.cuted in the PART ONE program:
20000 PRINT CHR$(4); "BLOAD CHAIN, A520"
20010 CALL 520"PART TWO"
The two lines may use any line numbers, but they should come one after the
other in the program, as indicated. The first line loads the Applesoft
chaining ability into the computer. The second line actually does the
chaining (but see next page, for warning).

106

There must be no space in the third line between the CALL address 529 and
the following quotation mark. The CALL address must not be given in
hexadecimal.

If you have Applesoft on the firmware ROM card, you can copy the CHAIN
program onto another diskette as follows. First place the CHAIN program
into Apple's memory, with the command
BLOAD CHAIN, A2056
Then save it on the desired diskette, with the command
BSAVE CHAIN, A2056, L456

If you are using RAM Applesoft (on diskette), you can copy the CHAIN
program onto another diskette as follows. First place the CHAIN program
into Apple's memory, with the command
BLOAD CHAIN, Al2296
Then save it on the desired diskette, with the command
BSAVE CHAIN, Al2296, L456

Note that neither Address parameter for copying CHAIN is the same as the
Address parameter for actually using CHAIN.

10i

108

Unless otherwise indicated, DOS commands may be used either in
immediate-execution mode or in deferred- execution mode (within a program) .

However, some text file commands (e.g. READ and WRITE) must be used in
deferred-execution mode.

Most DOS commands refer to a named file. A file may be a text (data)
file, or a program in Integer BASIC, APPLESOFT or Machine Language . The
tables below indicate which file types may be used by each command. The
first table lists the commands alphabetically; the second table groups
them by associated file type. The commands CATALOG, FP, INT, HAXFILES,
MON, NOMON, PR# and IN# are not included because they do not explicitly
refer to named files.

FILE TYPE USE, LISTED BY DOS COMMAND

DOS Integer Applesof t Sequential Random Machine
Command BASIC BASIC Access Access Language

Uses Program Program Text Text Binary
Files: File File File File File

APPEND x
BLOAD x
BRUN x
BSA VE x
CHAIN x
CLOSE x x
DELETE x x x x x
EXEC x
INIT x x
LOAD x x
LOCK x x x x x
OPEN x x
POSITION x
READ x x
RENAME x x x x x
RUN x x
SAVE x x
UNLOCK x x x x x
VERIFY x x x x x
WRITE x x

Note: use these commands only in deferred execution mode:
APPEND, OPEN, POSITION, READ, WRITE

110

FILE TYPE USE, LISTED BY FILE TYPE
Integer BASIC files only
CHAIN

Integer BASIC or APPLESOFT files
INIT
LOAD
SAVE
RUN

Seguential Text files only
APPEND
EXEC
POSITION

Either Seguential Text Files or Random-Access Text Files
OPEN
CLOSE
READ
WRITE

Machine Language files only
BLOAD
BRUN
BSA VE

All Types of Files
DELETE
LOCK
UNLOCK
RENAME
VERIFY

Note: these commands must be used in deferred-execution mode:
APPEND, OPEN, POSITION, READ, WRITE

111

112

When DOS detects an error connected with disk usage, it normally displays
a message describing the error and stops any program that is running.
These messages are in addition to the usual messages generated by
Applesoft or Integer BASIC. DOS messages can be distinguished from those
of Applesoft or Integer BASIC as follows: ·

An Applesoft message, such as
?SYNTAX ERROR
is preceded by a question mark .

An Integer BASIC message, such as
*** SYNTAX ERR
is preceded by three asterisks.

A DOS message, such as
SYNTAX ERROR
is preceded by no character at all.

A DOS message appears exactly the same, whether you are in Applesoft,
Integer BASIC or the Monitor- at the time the message is generated.

If a DOS message occurs when you are using the Monitor, the system is
reset to the type of BASIC from which you entered the Monitor.

By using Applesoft ' s ONERR GOTO command (see the Applesoft manual), you
can create Applesoft error-handling routines that deal with DOS messages
which would normally interrupt your program. When a DOS error occurs
following an ONERR GOTO command in an Applesoft program, a code number for
the type of error is sto red in decimal memory location . 222 . This is the
same memory location in which Applesoft stores the code for an Applesoft
error message. The command
Y = PEEK(222)
sets the value of Y to the Applesof t ONERR GOTO code corresponding to the
error that caused an Applesoft ONERR GOTO jump to occur.

DOS messages and their corresponding Applesof t ONERR GOTO codes are shown
below, with the most· common cause of each message . Each of the messages
is then discussed in greater detail, with a more comprehensive list of
causes and cures .

ONERR GOTO CODES

2,3
4
5
6
7

DOS message

LANGUAGE NOT AVAILABLE
RANGE ERROR
WRITE PROTECTED
END OF DATA
FILE NOT FOUND
VOLUME MISMATCH

114

Most common cause

Applesoft not on diskette
Command parameter too large
Write-protect tab on diskette
READing beyond end of text file
File misspelled, or not on diskette
Wrong Volume parameter

ONERR GOTO
code DOS message Most common cause

8
9

10
11
12
13
14
15

I/O ERROR
DISK FULL
FILE LOCKED
SYNTAX ERROR
NO BUFFERS AVAILABLE
FILE TYPE MISMATCH
PROGRAM TOO LARGE
NOT DIRECT COMMAND

Door open, or diskette not INITed
Too many files on diskette
Attempt to over-write a LOCKed file
Bad file name, parameter, or comma
Too many text files OPEN
Diskette file doesn't match command
Insufficient Apple memory available
Command must be in a program

DISCUSSION
LANGUAGE NOT AVAILABLE (ONERR GOTO code = 1)

Occurs if DOS cannot find a programming language, either Integer BASIC or
Applesoft, that is required to execute a DOS command. The commands FP,
INT, LOAD and RUN may all initiate a language search • . If Integer BASIC is
requested, DOS looks for that language in ROM. If Applesoft is requested,
DOS first looks for the language in ROM, using Applesoft from an Applesoft
firmware ROM card (if available) regardless of the card's switch
position. If Applesoft is not found in ROM, DOS looks on the diskette in
the "default" disk drive -- the drive indicated by the default or most
recent values of the S and D parameters. DOS will not look on any other
disk drive.

This message usually arises after a DOS request for diskette Applesoft, if
the diskette in the default drive does not contain the program APPLESOFT.
Replace the diskette with one that contains the program APPLESOFT; or use
the D parameter with any DOS command, to select the another drive. A
command such as this will do nicely:
FP, D2

If you think DOS should have found Integer BASIC in ROM, but it didn't,
try the following:

1. Turn off your Apple and remove the cover.
2. Locate the row of four large ROM chips (black, rectangular

objects) in the middle of the main printed-circuit board. These
chips are labeled "ROM F8", "ROM F0", "ROM ES" and "ROM E0".

3. Press down firmly on these chips.
4. Replace the cover, turn on the Apple and try INT again.

If you think DOS should have found Applesoft on your firmware ROM card,
but it didn't, try the following:

1. Turn off your Apple and remove the cover.
2. Unplug the Applesoft firmware ROM card. Locate the row of

five large ROM chips (black, rectangular objects) across the
card. These chips are labeled 1, 2, 3, 4, and 5 above
the chips, and D0, D8, E0, E8 and F0 below the chips.

3. Press these chips firmly into their sockets.
4. Plug the Applesoft card back into slot #0, the leftmost slot.
5. Replace the cover, turn on the Apple and try.FP again.

115

RANGE ERROR (ONERR GOTO code = 2 or 3)

Occurs when the value of a DOS command parameter or a DOS command quantity
is too large or too small. Refer to the manual to see which DOS commands
are used with which. parameters.

All Files:

Sequential
Text Files:

Random-Access
Text Files:

Binary Files:

Parameter Letter

Slot s
Drive D
Volume v

Byte B
Relative Field R
Absolute Field (EXEC) R

Record Length L
Record Number R

Starting Address A
Number of Bytes L

DOS Command Quantity

PR/I s s
IN/I s s
MAXFILES n n

Range
Minimum Maximum

1
1 2
(il * 254

(il 32767
(il 32 767
(il 32767

1 32767
(il 32767

(il 65535
32767

Range
Minimum Maximum

(il 16 **
(il 16 **

16

*Minimum volume number INIT will actually assign to a diskette is 1.

**Maximum slot number built into the Apple II is 7. In deferred­
execution mode only, the SYNTAX ERROR message is given for s values
from 8 through 16.

Note: The use of values outside the above ranges does not always cause the
RANGE ERROR message • . Any DOS command parameter or command quantity that
is -less than (il or greater than 65535 will cause the SYNTAX ERROR message,
not the RANGE ERROR message.

WRITE PROTECTED (ONERR GOTO code = 4)

Occurs when DOS attempts to store information on a diskette, but the disk
drive does not detect a "write-protect" notch or cutout on the left side
of the diskette's outer case . The following are the most likely causes:

1. There is an adhesive label placed over the diskette's write-protect
cutout, to prevent accidentally over-writing or deleting any information
on the diskette. This label may be removed, whereupon DOS will SAVE or
BSAVE or WRITE to the diskette.

2. There is no write-protect cutout on the diskette. This is true on the
System Master diskette, for maximum protection. While not recommended, it

116

is possible to carefully cut a notch of exactly the correct size and in
exactly the correct place. Use another diskette's write-protect notch for
a model.

3. If you receive this message while RUNning the COPY program, and the
cause is not either 1 or 2, above, you may have in.serted the diskette into
the drive incorrectly (in any other situation, DOS gives the I/O ERROR
message to signal incorrect diskette insertion). Check the diskette's
position in the drive, and re-read Chapter l's discussion on inserting
diskettes.

END OF DATA (ONERR GOTO code = 5)

Occurs when you try to retrieve information from a portion of a text file
where no information has ever been stored. Any byte beyond the last field
in a sequential text file, or beyond the last field of each record in a
random-access text file, may contain the value 0. Zero is the ASCII code
for a null character, a "nothing", and any command that causes the
retrieval of this character results in the END OF DATA message. Remember
that only OPEN automatically sets the position-in-the-file pointer back to
the file's beginning. The message usually occurs after an INPUT or a GET
command, and can arise in several different ways:

1. Too many successive INPUTs or INPUT with too many variables. Each
INPUT or INPUT variable causes one additional, adjacent field to be read
into the Apple.

2. Too many successive GETs. Each GET reads one additional, adjacent byte
or character into the Apple.

3. The B (for Byte) parameter was too large. In sequential files, this
parameter must not specify a byte beyond the last RETURN character in the
file. In random-access files, the B parameter should not specify a byte
beyond the last RETURN character in the currently selected record.
Remember, the first byte in a file or a record is byte_[.

4. The R (for Relative-field position) parameter in a POSITION command was
too large. In sequential files, this parameter must not specify a field
beyond the last existing field in the file. In random-access files,
POSITION's R parameter should not specify a field beyond the last existing
field in the currently selected record.

Remember, the R parameter used with POSITION is not the same as the R
parameter used with READ. It specifies a field position in the file,
relative to the current file position and forward in the file, only.
R0 specifies no change in the current file position. Rl jumps the file
position ahead to the first byte following the field that contains the
current position.

POSITION scans forward through the contents of the file, byte by byte,
looking for the Rp-th RETURN character. If it encounters a 0 byte (the
null character) before finding the required RETURN character, the END OF
DATA message is given immediately: it is not necessary actually to INPUT
or GET the null character.

117

S. The R (for absolute-field position) parameter in an EXEC command was
too large. This parameter may specify the first field beyond the last
existing field in a file, but attempting to specify the second field
peyond the file's end will cause the END OF DATA message. Remember, R0
specifies the first field in a file.

6. The R (for Record) parameter in a READ command specified a
random-access file record in which nothing has yet been stored. Before
you can READ from a particular record in a random-access file, you must
first WRITE some information into that record.

Remember, READ's R parameter is not the same as the R parameter used by
POSITION or EXEC. READ's R parameter specifies an absolute record in a
file: R0 is the file's first record, and so on.

DOS uses the OPEN command's L parameter for calculating where the Rr-th
record begins, so the OPEN preceding READ must use the same L parameter
value as the OPEN that preceded WRITE for that file.

FILE NOT FOUND (ONERR GOTO code = 6)

Occurs when certain DOS commands specify a file name that is not in the
CATALOG for the diskette in the selected or default disk drive. Only the
commands SAVE, BSAVE, !NIT and OPEN can create a file whose name did not
previously exist. In addition to these, CLOSE may be used with any valid
name. A file name specified by any other DOS command must already exist
on the diskette.

This message may arise in various ways:
1. You may have misspelled the file's name , by a typing error or by
omitting the comma that separates the file name from a following
parameter. Check the CATALOG for the exact spelling of the file's name.

Warning: if you have accidentally typed control characters into the name
of a file, CATALOG will not display these characters. For help, see
"File Names" in AppendixF.

2. The file is on another diskette. Check the CATALOG.

3. The file has been accidentally DELETEd. Check the CATALOG.

4. When you use the !NIT command or the UPDATE program on a diskette, you
specify a file name which DOS thereafter attempts to RUN each time you
boot the system with that diskette in disk drive 1. Unless you write a
BASIC program, and save it using the name given to !NIT or UPDATE, the
FILE NOT FOUND message will be given each time the system is booted with
that diskette in drive 1. If you can't remember the name of this
"greeting program", just UPDATE the diskette again.

VOLUME MISMATCH (ONERR GOTO code = 7)

Occurs when the Volume (V) parameter used in a DOS command is not the same
as the volume number assigned to the diskette in the default or selected

118

disk drive, when that diskette was INITialized. The volume number of a
diskette is shown at the head of each CATALOG display. Unless a DOS
command specifies a particular volume, the diskette's volume number is
ignored, and no message is given . If a DOS command specifies volume 0,
the diskette's volume number is still ignored. If no volume number is
given with INIT, or if volume number 0 is given, the diskette will be
initialized with the default volume number 254.

1/0 ERROR (ONERR GOTO code = 8)

Occurs after an unsuccessful attempt to store data on a diskette or to
retrieve data from a diskette (DOS tries 96 times, then gives up). This
message can occur in the following ways:

1. The selected or default drive's door is open . Close the door to the
disk drive.

2. No diskette in the selected or default disk drive. Put a diskette into
the drive and close the drive door.

3. Diskette in the selected or default disk drive has not been
INITialized. !NIT the diskette (and UPDATE it to a master diskette, if
you wish).

4. Diskette is inserted incorrectly. Check the diskette, and re-read the
section in Chapter 1 on inserting diskettes.

5. During execution of a VERIFY command, DOS found the specified file was
not stored correctly on the diskette. If the file's informa t ion is still
in memory, try storing it again (perhaps on a different diskette).

6. The DOS command's D (Drive) parameter has specified a disk drive that
does not exist in this system. The default drive is now the non-existent
drive. Just specify the correct D parameter with the next DOS command to
reset the default.

7. The DOS command's S (Slot) parameter has specified a slot that does not
contain a disk controller card in this system.

You are in trouble. The default slot is now the empty slot your last DOS
command specified. The next DOS command without a slot parameter will go
to the empty slot and return the same message as before. Worse yet, DOS
thinks the disk drive which does not exist in that slot is still
running. The nex~ DOS command specifying the correct slot will send
the system into permanent limbo, waiting for the non-existent drive to
stop running before it turns on the newly-selected drive. You must either
re-boot the system (losing any program in memory, of course) or else:

a) Type CATALOG, Ss (where s = correct slot)
b) Press the RESET key (when the system hangs)
c) Type 3D0G (system is now okay again)

119

DISK FULL (ONERR GOTO code = 9)

Occurs when DOS attempts to store information on a diskette, and finds
that no more storage space is available on that diskette. A maximum of
403 sectors can been filled with user - stored information, as displayed in
the CATALOG (if an individual file exceeds 255 sectors, the CATALOG
display of its length starts over again at 000). If you receive the DISK
FULL message, rest assured that all files are CLOSEd, and that DOS saved
for you all it could (leaving you with some portion of your file not on
the diskette) . If you receive thi s message while saving a file called
STUFF, the first thing you should do is to
DELETE STUFF
and then save your program on another diskette that has more room left .

If you receive the DISK FULL message and then immediately try to SAVE,
BSAVE or WRITE any file on the di ske tte before DELETEing any files, t hen
(are you ready?) the sector length of the eighth entry shown in the
CATALOG will be set to 0. Don't despair: despite the odd appea r ance of
the eighth entry's CATALOG displ ay , the file itself is in fine shape .
Other odd events may occur as well. To avoid such situations, if you get
a DISK FULL message, DELETE some files before trying to save o ther files.

FILE LOCKED (ONERR GOTO code = 10)

Occurs when you try to SAVE, BSAVE, WRITE or DELETE using a file name that
has been LOCKed on the diskette that is in the selected or default drive .
Check the CATALOG display : the names of LOCKed files are preceded by an
asterisk (*) in the CATALOG display . A file is LOCKed to prevent
accidental over-writing . Use anothe r diskette or UNLOCK the desir ed file .

SYNTAX ERROR (ONERR GOTO code= 11)

Occurs when DOS encounters a syntax error in a DOS command. Check the
manual for the exact syntax required for the command in question . The
problem may be a non- valid file name (see Appendix F), an incorrect
parameter symbol, a missing parame ter, a missing or incorrect separator
(usually a comma) . This message will a l so arise if a parameter value or
command quantity is a negative number or is greater than 65535, or, in the
case of the IN# and PR# commands used in deferred- execution mode if the
specified slot is from 8 through 16.

Rarely, every DOS command causes the Applesof t . or Integer BAS IC Syntax
Error message. This usually means that DOS has not been booted or has
become "disconnected" from input and output. Tr y pressing the RESET key,
then typing 3D0G to reconnect DOS; or, re-boot the disk.

120

NO BUFFERS AVAILABLE (ONERR GOTO code = 12)

Occurs when a DOS command requires another file buffer for input or
output, and all the available file buffers are already in use. On booting
the system, DOS reserves enough s pace in the Apple's memory for three
input-and-output file buffers . A subsequent MAXFILES command can increase
or decrease the number of available file buffers, and a CLOSE command can
release file buffers currently in use for text files.

Many DOS commands use one file buffer for input or output during their
execution, and then relinquish that buffer when execution of the command
has ceased.

When a text file is OPENed, a file buffer is assigned to that file for
input and output . This buffer remains in use, generally, until its fi1;,e
is CLOSEd either specifically by file name or by the nameless CLOSE that
de-allocates all the text-file buffers. A text file is not automatically
CLOSEd by a program's coming to an end . To conserve buffer space, CLOSE
files as soon as you are through using them. Remember that--the next OPEN
will re-set the position-in-the-file pointer to the file's beginning.

The MAXFILES command can be used to increase buffer space before writing
the program or loading the program into memory . Increasing MAXFILES moves
HIMEM down, and this can erase stored Integer BASIC program lines or
Applesoft strings. Changing MAXFILES in the middle of a program can be
especially dangerous.

FILE TYPE MISMATCH (ONERR GOTO code = 13)

Occurs when a DOS command attempts to use a file name that is already
assigned to a file whose file type is inappropriate to the present
command . If you are su r e the command is correc t, use a file name that is
not now on the diskette, ' use a different diskette, RENAME the existing
file or DELETE the existing file.

This message arises from several different incorrect combinations of DOS
commands with existing file types. Here are t he correct combinations :

LOAD f, RUN f, SAVE f

CHAIN f

OPEN f, READ f, WRITE f ,
APPEND f, POSITION f, EXEC f

BLOAD f, BRUN f, BSAVE

f must be an Applesoft or Integer
BASIC program file.

f must be an Integer BASIC program file .

f must be a text file .

f must be a binary program or data file.

The greeting program's file name, specified with !NIT or UPDATE,
must refer to an Applesoft or Integer BASIC program file.

121

/

PROGRAM TOO LARGE (ONERR GOTO code = 14)

Occurs when a DOS command attempts to place a diskette file into Apple's

memory, and finds the available memory insufficient to contain the entire
file. You (or a previous program) may have set HIMEM too low for the

current task, or a large MAXFILES may have set HIMEM too low. If you set
the number of file buffers to three, using the command
MAXFILES 3
then HIMEM will be returned to the booted value given in Appendix D, Table

2.

~
If you are in Integer BASIC, and HIMEM is set low (to protect the
high-resolution screen memory, for instance), you may experience trouble
on shifting to diskette Applesoft. Diskette Applesoft occupies about
12.5K of memory, but a shift to diskette Applesoft (with FP or LOAD or

RUN) does not reset HIMEM to maximum. When DOS tries to load the
Applesof t program from diskette, the message PROGRAM TOO LARGE will be
given if HIMEM is below about 13100. The system will be left in Integer

BASIC again, and you must set HIMEM higher from Integer BASIC. See
Appendix D, Table 2 for your system's maximum HIMEM with DOS and three
file buffers.

In deciding whether or not a program will fit into the available memory,
DOS looks only at the number of diskette sectors occupied by the
program. In general, the program does not completely fill the last sector
(256 bytes), but DOS ignores this fact. DOS compares only the high-order -
byte of LOMEM (Integer BASIC) or HIMEM (Applesoft) with the high-order
byte of the projected end - of -program location. Thus a program which
should fit into memory, but which would leave less than 256 bytes of free
memory after loading, may cause the PROGRAM TOO LARGE message . Sometimes
this can be corrected by moving HIMEM or LOMEM slightly, to change the
high-order byte, before loading the program.

NOT DIRECT COMMAND (ONERR GOTO code = 15)

Occurs when you try to use one of the text file commands APPEND, OPEN,
POSITION, READ or WRITE from immediate-execution mode. These DOS commands
can be used only from within PRINT statements in program lines.

122

This appendix tells how information is stored on a diskette, and how DOS
remembers where particular information has been stored.

In the following discussion, a dollar sign ($) or the label "Hex"
preceding a number indicates that the number is expressed in hexadecimal.

OVERVIEW OF THE STORAGE PROCESS
In the Disk II system, information is recorded on a diskette in 35
concentric zones or bands, called tracks. These tracks are numbered
from track $00, the outermost, through track $22, the innermost. The disk
drive's recording and reading head can be moved in and out, to stop and
hover over each of these 35 different zones of the spinning diskette.

Furthermore, the length of each track on the diskette is divided into 13
segments, called sectors. These sectors are numbered from $0 through
$C, and up to 256 ($100) bytes of information can be stored in each
sector. Once the disk drive's recording and reading head is positioned
over a given track, that track's 13 sectors will pass under the head, one
after the other, each time the diskette spins around . DOS always records
information on the diskette in 256-byte chunks, exactly filling one sector
each time.

To store information on the diskette, DOS first puts 256 bytes (one
sector's worth) of the information in an area of Apple's memory called a
file buffer. When this file buffer is full, the information is stored
in one sector on the diskette. Then DOS fills Apple's file buffer with
the next 256 bytes of information and stores that information on the
diskette.

In general, DOS will begin storing a program or text file wherever it can
find an unused sector on the diskette. When that sector is filled with
its 256 bytes of information, DOS finds another free sector, perhaps on
another track, and continues to record information there. This process
continues until the entire file has been stored.

I

To remember which sectors of which tracks contain the information for a
particular file, DOS makes up a list of each track and sector used, as it
stores the file. Then DOS stores that list, called a track/sector-iist,
in yet another free sector (or sectors) on the diskette.

Finally, the files's name, file-type, length in sectors, and the diskette
location of the file's track/sector list are recorded in a special area of
track $11 called the directory. At this time, too, the diskette's
track bit map is updated to correctly show which sectors of each track
are currently in use.

WRITING INTO A SEQUENTIAL TEXT FILE
Entries in a text file consist of 1 to 32767 characters stored as their
equivalent ASCII codes and ended by a RETURN character (either ASCII $0D
or ASCII $8D). Each such entry -~s called a field.

124

In a sequential text file (no Length parameter specified when the file was
OPENed), fields are stored immediately following each other (see Chapter
6). DOS writes the first byte of each new field immediately following the
RETURN character that ended the previous field (unless otherwise
instructed by a Byte parameter). Each time the file is OPENed, DOS
forgets the current position within the file, and starts WRITEing again in
byte 0 (again, unless otherwise instructed by a Byte parameter).

In order to re-write a particular field or character within a sequential
file, WRITE can be used with the B (for Byte) parameter to begin writing
at the specified, absolute byte of the file (the first byte in the file
is byte 0, the next is byte 1, etc.). The byte specified may be before or
after the current position in the file'

It is very difficult to remember exactly which character appears in every
byte of a text file, especially in a sequential text file. For this
reason, use of the Byte parameter in sequential text files is not
recommended.

The POSITION command can be used with an R (for B:elative-field)
parameter to move a pointer ahead (only) through the file a specified
number of fields relative to the current position in the file. A
program portion such as

i20 PRINT D$_; "OPEN NAMESu

130 PRINT D:t.; uposIT!ON NAMES_. Ri
3 n

140 PRINT D$_; "l.JRITE NAMES "
160 PRINT HA.PPLE COMPUTER"
:1.70 PRINT [)$; "CLOSE NAMES"

will attempt to WRITE the characters APPLE COMPUTER into the NAMES file,
beginning in the first byte of the fourteenth field (the first field is
Relative-field 0).

POSITION can move you to the first byte of any given field Relative to the
current position in a sequential text file. If you then re-WRITE that
field, however, ~must make sure that you re-PRINT exactly the same
number of characters that you PRINTed in that field originally. If you
PRINT fewer characters, you will have created two new fields: the field
you just PRINTed, and the tail-end of the original field you were
over-writing. If you PRINT more characters than the original field
contained, you will have over-written some of the characters at the start
of the next field.

125

WRITING INTO A RANDOM-ACCESS TEXT FILE
For a random-access text file, a Length parameter is specified when the
file is OPENed. The Length parameter determines the number of bytes in a
record, which is a field or a collection of fields that DOS treats as a
unit. Each record in a random-access text file is like a separate
sequential text file whose maximum total length has been specified by the
Length parameter. As long as you stay within that maximum Length, you can
WRITE and re-WRITE all you want, without affecting any other record in the
file. WRITE can be used with the R (for ~ecord) and B (for Byte)
parameters to begin writing into any byte of a specified record.

Since ~ DOS command will terminate WRITE-ing, you cannot use POSITION
to jump ahead into different fields within the r ecord specified by the
WRITE command .

DOS uses the Length parameter to calculate where to write the first byte
of each new record (L bytes beyond the first byte of the previous
record). DOS simply skips over any bytes between the previous record's
last character and byte L. The bytes skipped over will continue to
contain whatever values were stored there at some earlier time (see the
next section for details).

If you attempt to WRITE more characters in a random-access record than
you specified in the Length parameter, all the characters are stored
correctly on the diskette. However, when you begin WRITEing to the next
record, DOS calculates the new record's starting position~ if the
previous record had been within the specified Length. The new record thus
overwrites the last characters of the previous, over-sized record,
including the end-marking RETURN character of the previous record's last
field. The result is messy.

HOW DOS WRITES INTO TEXT FILES: GENERAL PROCEDURE
When you WRITE a field into a text file, DOS first checks on the diskette
to see whether or not you have already stored information in the sector
which should contain that field. If your file has never used that sector
bef ore, DOS places zeros in all 256 bytes of an Apple file buffer, and
then lets you put your information into that buffer for later storage in
the correct diskette sector. The contents of the file buffer are stored
on the diskette when your information has completely filled 256 bytes of
the buffer, or when the file is CLOSEd.

Thus, when you WRITE to a particular sector the first time, unused
bytes are given the value zero. An attempt to READ a byte containing a
zero (the ASCII code for the null character) will result in the message
END OF DATA

126

But if DOS finds your file has already stored infor mation in the sector
which should contain the field that you are now WRITEing, it reads all 256
bytes from that sector into the Apple ' s file buffer. After you have
changed any of those file-buff er bytes to contain your new information
the WRITE, POSITION (sequential files only) and PRINT commands take care
of this for you -- DOS then stores the buffer's contents right back into
the the same diskette sector where they originated . The contents of the
file buffer are stored back on the diskette when you attempt to change any
byte not in the sector that was read into the file buffer, or when the
file is CLOSEd .

Thus, if you WRITE more information for a file, and DOS stores that
information in a diskette sector already being used by your file, this
wi l l not re - write any zeros in unused bytes . Any of those sector bytes
which ~ did not re- write will continue to contain whatever information
might have been stored there before your WRITE command. This is true of
the unused bytes at the end of a sequential text file, and also true of
the unused bytes in each fixed-length record of a random-access text file.

CONTENTS OF FILE SECTORS
Now that you know the general process of recording a file on diskette, we
can discuss each element in more detail. The actual information stored,
sector by sector, is different fo r each type of file .

FORMAT OF FILE SECTORS
for different file t ypes

Fil.e Byte

~ Sector (Hex)

BASIC 1st sector 0
(both
types)

2 through FF

Subsequent All
sectors bytes

Text All All
sectors bytes

127

Contents of byte

Program l ength, low byte
" " , high byte

Tokenized program

Tokenized program

ASCII representation of
text: one byte / character

($00 marks end of file)

File Byte
~ Sector (Hex) Contents of byte

Binary 1st sector 0 Starting RAM address, low byte
II > high byte

2 Length of RAM image, low byte
3 II > high byte

4 through FF Binary data

Subsequent All Binary data
sectors bytes

THE TRACK/SECTOR LIST
As a file is 8tored on the diskette, DOS makes a list of the diskette
locations used by the file. This track/sector list is then stored on the
diskette in the same way the file itself was stored. The contents of a
track/sector list are as follows:

3

Byte
(Hex)

2

through

c
D

E
F

10
11

FE
FF

B

First Sector of a
TRACK/SECTOR L1ST

Contents of byte

Not used

Link: track number where continuation of the
track/sector list may be found.

Link: sector number where continuation of the
track/sector list may be found.
(If both bytes of Link= 0, no link.)

Not used

Track number of first file sector
Sector

Track number of second file sector
Sector

Track number of third file sector
Sector II

Track number of 122nd file sector
Sector

128

If any track/sector pair is 0/0 this indicates an unassigned sector
(usually the end of the file, although text files may contain 0/0
indicators for many as-yet-unassigned sectors where future bytes or
records may be written).

Subsequent sectors of the track/sec tor list (if the list extends beyond
122 track/sector pairs) are identical to the first sector described above,
except that the track/sector pairs refer to subsequent groups of 122 file
sectors. Also, Link bytes 1 and 2 will be different for each subsequent
sector. Each Link pair gives DOS the diskette location of the next
portion of the track/sector list. If both bytes of the Link are 0, this
indicates the final portion of the track/sector list.

With a text file, only the track/sector pairs for those sectors actually
containing information appear as non-zero in the track/sector list. DOS
calculates the correct position for the track/sector pair within the
list, filling unassigned track/sector pairs with zeros. If a complete
sector at the beginning of the track/sector list would contain nothing but
zeros, that sector is not stored on the diskette.

Thus, if the Length parameter for a random-access file is 128 (two records
per sector) and you WRITE only to record number 2700, only two diskette
sectors are actually used: one for the contents of record number 2700, and
one for the "twelfth" (and only) sector of the track/sector list. The
contents of records number 0 through 2683 may someday occupy 1342 sectors;
but until those records are written, they do ~ot use any diskette space.
The track/sector list giving the locations of the sectors containing
records number 0 to 2683 would have occupied eleven additional sectors,
and the list position of the track/sector pair for record numbe r 2700 is
calculated as if the entire twelve sectors of list were present.
However, since nothing has actually been written to any of the sectors
that may someday contain the first 2684 r eco rds, DOS does not keep the
track/sector list for those unused sectors.

THE DISKETTE DIRECTORY
On every INITialized diskette, track $11 is reserved for information
concerning the contents of the diskette. This is where DOS stores the
directory containing, for each file, the file's name, its file type, the
nunber of sectors occupied by the file (MOD 256), and the diskette
location of the file's track/sector list. The CATALOG command causes most
of this information to be displayed on the screen. Each sector of a
diskette directory is formatted as follows:

Byte (Hex)

2

One sector of a DISKETTE DIRECTORY

Contents of byte

Not used

Link: Track number where continuation of the
directory may be found (normally $11)

Link: Sector number where continuation of the
directory may be found
(If both bytes of Link= 0, no link.)

129

Byte (Hex) Contents of byte

3 through A Not used

B through 2D Directory entry for file (see below)

2E through 50 Directory entry for file 2

51 through 73 Directory entry for file 3

74 through 96 Directory entry for file 4

97 through B9 Directory entry for file 5

BA through DC Directory entry for file 6

DD through FF Directory entry for file 7

The file numbers shown for the seven directory entries are
arbitrary. When a file is DELETEd, DOS marks the directory entry for
that file (see following table). The next time a file is stored, DOS
replaces the old marked directory entry with the directory entry for the
new file. Thus, while DOS originally fills the directory in the order
shown, file DELETEions soon render this order meaningless.

The diskette directory begins in track $11, sector $C . If more space is
needed to store additional direc tory entries, sector $C is Linked to
sector $B . If still more space is needed, sector $B is Linked to sector
$A, and so on, through sector $1. This allows the directory to s tore
directory entries for a maximum of 84 different files.

Each directory entry is written in the following format:

Relative
Byte (Hex)

2

3 through 20

21

22

DIRECTORY ENTRY FOR ONE FILE

Contents of Byte

Track number of the file's track/sector list
(Changed to $FF when the file is DELETEd.)

Sector number of the file's track/sector list

File type (see discussion on the next page)

File name

Sector count: the number of diskette sectors
(MOD 256) occupied by the file

End mark: normally zero
(but changed to the track location of
the track/sector list, from relative
byte 0, when the file is DELETEd)

130

A directory en try' s relative byt e specif ies each byte within the entry,
although each en try starts a t a different actual byte number within the
directory sector. To find the absolute sector byte corresponding t o a
relative byte , add th e relative byte to th e entry ' s first absolute sector
byte (as listed in th e previous table).

Because only one byte is used t o store a file's sector count, the ma ximum
directory sector count is 255 ($FF). If a file exceeds 255 sectors, its
sector count (as displayed by CATALOG) starts over again at 000 . This
does not affect use of the file, but may give an e rroneous imp ress ion of
how full the diskette is.

The eight bits of a file's t ype-designating byte , relat ive byte number 2
in a file's directory ent r y (see previous table), are assigned values as
follows:

6
5
4
3

2

CATALOG
symbol

*

B

BYTE INDICATING THE FILE TYPE

File type designated

File is locked (write protected) if this bit
File is unlocked (not protected) if this bit

Expa~sion tr,pe for future use (nor~ally zero)

Binary fil e if this bit

A Applesoft BASIC file if this b i t

I Integer BASIC file if this bit =

T Text file if bi ts 0 through 6 are all zer o

1
0

The file type is determined by a 1-bit appearing in ~ of the bits 0
through 6. If bits 0 through 6 are all 0-bits, the file type defaults to
a Text file.

The file 's typ e-designating by t e can thus t ake on the following values:

VALUES FOR BYTE INDICATING FILE TYPE

File Value of Type byte (Hex)
!.Yll File unlocked File locked

Text 0 80

Integer 81

Apples oft 82

Binary 4 84

131

VOLUME TABLE OF CONTENTS
Sector $0 of track $11 contains the diskette's Volume Table of Content s,
or VTOC . The VTOC stores the following information :

Byte
(Hex)

0

1
2

3

4
5

6

through 26

27

28 through 2F

30
31
32
33

34

35

36
37

38 through 3B
3C through 3F
40 through 43

44 and 45
46 and 47

VOLUME TABLE OF CONTENTS (VTOC)
Track $11, Sector $0

Value
(Hex)

2

11
0C

2

0
0

through FE

0

7A

0

FF
F8
00
00

23

0D

00
01

0
0
0

0

Description

Not used

Track number of first dire~tory sector
Sector

DOS release number

Not used

Diskette volume number (default: $FE)

Not used

Maximum number of track/sector pairs possible
in each sector of a track/sector list

Not used

These four bytes are a mask for the
track bit maps (see next 2 pages):
each 1-bit enables one of the 13
sectors to be used in every track.

Number of tracks per diskette

Number of sectors per track

Number of bytes per sector, low byte
" " " high byte

Track 0 bit map (These tracks
Track 1 bit map not available
Track 2 bit map to the user)

Track 3 bit map
"

[Continued on next page)

132

Byte
(Hex)

48 and 49
4A and 4B

78 and 79
7A and 7B

7C through 7F

80 and 81
82 and 83

CQJ and Cl
C2 and C3

C4 through FF

Value
(Hex)

QJ

QJ

QJ

QJ

QJ

QJ

TRACK BIT MAP

Descri2tion

Track 4 bit map

Track $10 bit map
"

Track $11 bit map (Directory & VTOC)

Track $12 bit map

Track $22 bit map
"

Not used

Starting in byte $38 of the VTOC (see previous table),
subsequent four-byte groups each contain the track bit .!!!!!£.
for one of the diskette's 35 tracks . The arrangement of 1-bits
and QJ~bits within a track's bit map shows DOS which sectors of
that diskette track are currently in use, and which sectors are free . The
bit map for each track uses the following format:

lst

Designated
Sector

Bit (Hex)

7
6
5
4
3
2
l
QJ

c
B

A
9
8
7
6
5

TRACK BIT MAP
For one diskette track

Byte

2nd

2

3rd & 4th

133

Designated
Sector

Bit (Hex)

7 4
6 3
5 2
4 l
3 QJ

through QJ Spare

All Spare

If a bit in the track bit map contains the value 1, the sector
corresponding to that bit is free. If a bit in the map contains the value
0, the sector corresponding to that bit is currently in use. Bits marked
"Spare" in the table above contain the value 0; these bits are not used.
The track bit map for a typical track might appear as follows:

TYPICAL TRACK BIT MAP

1st byte 2nd byte 3rd byte 4th byte

0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 1 1 1 0 0 0 -----
tttttttt t t t t t Spare Spare Spare
C B A 9 8 7 6 5 4 3 2 1 0 ------------------

Not used
Sectors designated

Free sector (assuming the corresponding bit of the mask,
VTOC bytes $30 through $33, is also 1)

0 Sector in use

When a file is being stored on the diskette (using WRITE, SAVE or BSAVE),
an entire track is allocated to the file at once (when possible), and the
track's bit map shows the entire track in use. Then, when the file is
CLOSEd, those sectors not actually used are again designated as free, in
the bit map for that track.

Sectors actually used to store a file's information, however, can only
be "set free" when that file name is DELETEd. Suppose your diskette
contains a 100-sector BASIC file named BIG, for instance. If you now
SAVE, on the same diskette, a 2-sector file with the same name BIG
(overwriting the old file) a CATALOG of the diskette will reveal that your
2-sector file BIG is still using up 100 sectors. To free up unneccessary
sectors used by a BASIC file named BIG, use the following sequence of
commands:
LOAD BIG
DELETE BIG
SAVE BIG
A similar process can be used to release unneccessary sectors used by
binary files.

To release unneccessary sectors being used by a text file, you will have
to READ each of the file's fields into the Apple. If you store all the
fields in an array, you can then DELETE the original file before WRITEing
each record back onto the diskette using the original file name. Another
way to do this is to read each field into the Apple and immediately WRITE
the field back onto the diskette using a file name that is different
from the original file name. When you have read and re-written the last
field, you can DELETE the original file.

134

TRACK AND SECTOR ALLOCATION ORDER
Each diskette contains 35 tracks, three of which are reserved for DOS and
one for the Directory, leaving 31 tracks for the user. Each track
contains 13 sectors, so all together 31*13 or 403 sectors are available to
the user.

Sectors are filled starting with sector $C and working back to sector $0.
Tracks are first filled starting with track $12 (just inside the
directory/VTOC track) and proceeding inward to track $22 (the innermost
track). When track $22 has been filled, tracks are then filled starting
with track $10 (just outside the directory/VTOC track) and working outward
to track $3 (the outermost track available to the user).

r------- - ~-;:--..----:a::-$-; ::-$-;i

First Last
Filled Filled

First: $12 ---> $22
Then: $10 ---> $03

135

(DOS) I

First
Filled

$C --->

I
I
I

(Direc~ory/VTOC)

Last
Filled

$0

-.Diskette
Cover

RETRIEVING INFORMATION FROM THE DISK
To retrieve a file from diskette, DOS follows the process used to store
the file, but in reverse . After a command such as
LOAD FILE
or
BLOAD FILE
for instance, DOS goes to the diskette's file directory in track $11, and
finds the direc t ory entry containing the name FILE . This entry also
contains the diskette location (by track and sector) of the desired file's
track/sector list . DOS then goes to this track/sector list, and reads the
first track/sector pair . This pair specifies the diskette location of the
first sector containing the program named FILE . When DOS has read that
first sector of program into the Apple, it returns to the track/sector
list for the location of the program's second sector, and so on.

READING FROM A SEQUENTIAL FILE
When READing f r om a sequential text file, with a program portion such as
51/J PRINT D$; "READ TEXTFILE"
61/J INPUT A$
for instance, the general process is like that described for LOADing a
program file . However, only the sector containing the text file's next
field (all characters from the current position in the file through the
next RETURN character) is read into the Apple's file buffer in response to
t he INPUT command . Then the actual sector bytes that make up the desired
field are assigned to the variable A$. This process is repeated if the
field extends over more t han one diskette sector. Each subsequent INPUT
command will cause reading of the file to resume, from the Apple ' s file
buffer if it already contains the proper field, or by reading another
diskette sector into the Apple. This continues until the last field is
read or some command CLOSEs the file.

By using the READ command with the B (for Byte) parameter, you can cause
the next INPUT to begin reading from the specified absolute byte in the
file (the file's first byte is 0, the next is 1, etc.). This byte may be
before or after the current position within the file. To use this
parameter effectively, however, you must know the contents of every byte
in your file. The POSITION command uses the R (for _g_elative- field)
parameter to move DOS ' s current-position pointer the specified number of
fields forward (only) through the file, relative to the cur rent position
in the file. Each time you OPEN a file, DOS forgets its current position
in the file and starts READing again from the beginning of the file
(unless otherwise instructed by a Byte parameter).

The INPUT command treats a response somewhat differently i n Integer BASIC
and in Applesoft . If certain characters such as the colon or comma appear
in the response field, further characters in the field may be ignored or
assigned t o multiple I NPUT variables (if any) . For details, see the
appropriate manual fo r Integer BASIC or for Applesoft ,

136

READING FROM A RANDOM-ACCESS FILE
The text-reading process is somewhat different when READing from a
specified record of a random-access text file (also see WRITING TO A
RANDOM-ACCESS FILE in this appendix). In a random-access text file, each
record is composed of the same number of bytes, specified in the Length
parameter when the file was OPENed prior to WRITEing the file. When this
same file is OPENed prior to READing it, an identical Length parameter is
given. To find the beginning of a particular record (specified by the
READ command's R parameter), DOS uses the Length parameter to calculate
the number of bytes occupied by all the preceding records. That number is
then divided by 256 ($100) to determine how many file sectors DOS must
skip over to reach the sector containing the desired record. Then DOS
examines the file's track/sector list and finds the diskette location of
the desired file sector. Finally, DOS reads the correct sector into the
Apple's file buffer. Then the correct bytes can be read from the file
buffer.

This same retrieval process would be followed even if the text file had
originally been stored as a sequential file, or as a random-access file
using a completely different Length. DOS blindly calculates the sector
and byte position of the requested record according to whatever Length
parameter you specify when you OPEN the file prior to READing from it,
regardless of the Length parameter (if any) that was used when WRITEing
the file in the first place.

By using the READ command with both R (for Record) and B (for Byte)
parameters, you can cause the next INPUT to begin reading from the
specified absolute byte in the specified record (each record's first
byte is 0, the next is 1, etc.). This byte may be before or after the
current position within the record. To use this parameter effectively,
however, you must know the contents of every byte in the specified record.

The POSITION command, while primarily intended for access to sequential
files, can be used with the R (for g_elative-field) parameter to move
DOS's current-position pointer the specified number of fields forward
(only) through the current record., relative to the current position in the
record. READ is used with the R (for g_ecord, this time) parameter to
move the current-position pointer to the beginning of the desired record.
Using POSITION cancels READ mode (without resetting the position-pointer),
and another READ (this time, with !!.£ parameter) re-instates READ mode.

Each time you OPEN a file, DOS forgets its current position in the file
and starts READing again from the beginning of the file (unless otherwise
instructed by a Byte and/or Record parameter).

DOS keeps no information for you concerning the structure, format,
record-length, or field-length of your text files. To use your
random-access text files effectively, YQ£ must keep detailed written
information about the structure of these files, or keep the information at
the beginning of the file ••

137

138

TABLE 1: APPLE II MEMORY MAPS
A. MEMORY AREAS OVER-WRITIEN WHEN BOOTING DOS

Location on
any system:

Highest RAM
memory address -------+-

DOS moves
HIMEM here -------+­

[Note 2]

16383 ($3FFF) -------+-

7424 ($1D00) -------+-

6912 ($1B00) -------+-

2559 ($9FF) --------+.

2048 ($800) ------+-

1023 ($3FF) -------+-

768 ($300) ------+-

Lowest RAM
Memory address ______..

000 ($000)

8910 Relocated DOS,
($2300) on completion

bytfs of boot

~1 7 bytes not used

1792 Three file
($700) buffers of

by rs
595 ($253) bytes

for input & output

DOS, where first booted
from a Master diskette

[Note 1 l

DOS Relocation Code
[Note 1]

"Nibble" buffers
used during boot

First stage boot
starts here

Location on a
48K system:

- 49151 ($BFFF)

- 40192 ($9D00)

- 40184 ($9CF8)

- 38400 ($9600)

Note 1. This memory area is not affected when booting a Slave diskette:
DOS is placed directly below the Highest RAM Memory address that was
available on the system that INITialized the Slave diskette, whether
appropriate to the present system or not.

140

B. MEMORY AREAS USED BY DOS AND EITHER BASIC

Highest RAM
memory address :

49151 ($BFFF) -
on a 48K system

16384 -­
($4000)

. 8192
($2000) -

Lowest RAM
memory address:__..

0000 ($0000)

10Js2 Disk
($2A00) Operating

by Is
System

(if booted)

Intege~ BASIC
I

Applesof t
program lines strings
start at HIMEM start at HIMEM
and build down and build down

I I ___ .t. ________ L ___

High-resolution graphics, Page 2

[No te 5 l

High-resolution graphics, Page 1

------[-NM;-41---1---
I
1--1
I
I

DiskJtte -------+- Applesoft
Either BASIC's I (if used)

variables I occupies I
start at LOMEM I this space

aad build up I [Note 4 l
------ -'- I

P!~~;::o~~nes 1 I
I
I
I push LOMEM up I I

I I

BASIC System use:
low-resolution graphics

and text screen, · etc.

Without DOS,
either BASIC

- sets HI!1EM here
[Note 2 l

Booting DOS
- sets HU1EM here

-

-

[No t e 2]

FP (diskette)
sets LOME!1 at
12291 ($3003)

[Note 2)

FP (firmware)
and INT set

LOMEM here
[No t e 2 l

Note 2. If your system is in Integer BASIC, the HIMEM pointer can be
found (low byte first, then high byte) in locations 76-77 ($4C-$4D). If
your system is in APPLESOFT BAS I C, the HIMEM pointer is in locations

141

115-116 ($73-$74), same format. See Table 2 for the value of HIMEM set by
booting DOS. Increasing MAXFILES will move HIMEM down an additional 595
bytes for each file buffer added. For the locations of other Applesoft
program pointers, consult your Applesoft II BASIC Programming Manual,
Appendix I.

TABLE 2: HIMEM VALUE SET BY BOOTING DOS
When DOS is booted, HIMEM is set according to the amount of memory in the
system:

System Highest RAM address HIMEM: set by DOS ·boot
size Decimal Hexadecimal Decimal Hexadecimal

16K 16383 $3FFF 5632 $1600
20K 20479 $4FFF 9728 $2600
24K 24575 $5FFF 13824 $3600
32K 32767 $7FFF 22016 $5600
36K 36863 $8FFF 26112 $6600
48K 49151 $BFFF -27136 $9600 [Note 3 I

Note 3 . The number -27136 could also be written 38400, but Integer BASIC
will not accept numbers greater than 32767 . In Integer BASIC, memory
addresses greater than 32767 must be expressed as their negative
equivalents . The negative equivalent of any positive decimal address n is
(n - 65536).

Note 4 . Using high- resolution graphics Page 1 erases the contents of
· memory locations 8192 through 16383. Unless DOS sets HIMEM to a value
greater than 16383, an attempt to use high-resolution graphics Page 1 will
erase part of DOS. This means that you cannot use Disk II and
high-resolution graphics at the same time, unless your system contains at
least 32K of memory.

If you are using diskette Applesoft, an attempt to use high-resolution
graphics Page 1 will erase part of Applesoft. With diskette Applesoft,
you may use high-resolution graphics Page 2, only, if your system contains
at least 36K of memory. Sea Note 5 .

Note 5 . Using high-resolution graphics Page 2 erases the contents of
memory locations 16384 through 24575. Unless DOS cets HIMEM to a value
greater than 24575, an attempt to use high-resolution graphics Page 2 may
erase part of DOS. This means that you cannot use Disk II and Page 2
high-resolution graphics at the same time, unless your system contains at
least 36K of memory.

142

DOS ENTRY POINTS

Routine to re- connec t DOS (if page 3 is over -written) :

System
size
48K
32K
16K

Decimal address
(CALL)
-25153

23999
7615

Hexadecimal address
_(__Q___l
$9DBF
$5DBF
$1DBF

The Monitor command 3D0L displays this number at the top right.

Locations containing the start address and length of a BLOADed program:

System
size

Start address (low byte)
Decimal Hexadecimal

Program length (low byte)
Decimal Hexadecimal

48K
32K
16K

43634
27250
10866

$AA72
$6A72
$2A72

43616
27232
10848

To see the starting address or length after a BLOAD, type
PRINT PEEK(low byte)+ PEEK(low byte +1)*256

$AA60
$6A60
$2A60

Program to find the DOS locations containing the starting address
and length of _the most recently BLOADed program, on any size system :

5 REM BLOAD FINDER
7 H = 384(10 : REM Dos~BOOT HIMEM

8 T = 49:152 : REM HIGHEST ADDRESS

10 D$ = CHR$ \4) : REM CTRL-D

20 PRINT D$; " BSAVE FOO_. A$7777.• L$77"

30 PR I NT D$.• " BLOAC> FOO"

40 PRINT D$.• "DELETE F OO"

50 FOR = H + 1792 TO T
60 IF PEEK (I) < > 119 OR PEEK

(l + 1) <) 119 THEN NE:o<r I

70 PRINT "LOCATIONS OF START

ADDRESS : " .;I .•", "-• I + 1

80 FOR I = H + 1792 TO T

90 IF PEEK (l) <)- :119 OR PEEK

(! + 1) < :> 0 THEN NE:>(T I

100 PRINT "LOCATIONS OF LENGTH: "

_, L "-, "-•I + :1

The values of H and T (lines 7 and 8) are shown for a 48K system .
Appendix D, page 142, shows the correct values for your system .
This program takes about 2 minutes to find the desired locations .

DOS character input and output routines :

See Chapter 10, expecially Note 7 on page 105 . For an example
using the technique described, see the program on page 151 .

144

""' 01

25 .,

49

48
47

46

45
44
43

42

37

Z AD0r--------=Jl

I DEV

27~
24~ I OUT

28~
23~ I OUT

50~+12
33 <.:.ill---'-12

PATENT PENDING ~c::omputarnc;

C5
JO.lµF

74LSl74~f I
v::~

GND

•

DRIVE SELECT

oso~ooo5'~oo

_t_c 3 -12

rO.l..,F

+• I

R7
3K

R6
03 560!'1.

MPSU51

I

MOTOR
ON

---.,,
114 7'4LS132 AZ

11,12
9

C7 +12 IJ,15,17,19
C4 1,3, 5,7 C6

0
rO.l_µF Jo·'f'' Jo·'>''" -::llCI

0 c I :::;
en ~~ 0 116 7'4LS0~ 82 ~:z

::c n~
Or
Z> rn z~

~n

:s:: ~~

~ 1/6 74LS05 BZ

I
0

T ..
c ~16

I
;;
;Ii:;

WR OA.TJ. !1e -I -
WR REQ I 10 z I -I rn ~, ..

::llCI I j!: 1/4 74lSl32: AZ

0
ENBL Z j 14b

rn
--,-

CIRCUIT SCHEMATIC: DISK II ANALOG BOARD

t

•c
~2 ~ .. ~2

~8 ..
; ~
~

L~ ;
" 8 1:0 j !?

~o

2
0•
ii:!! ~ ~

" 6~
~~ ~ .o

~
v~

3
:i:~

~~
~.

0

~~
~2

~~

g~

~:::~ ~ ~~

"~
~

H'· ~ z~
•Ht•

+~~
3~ ~ uo

H'·

. ~a::!

146

The DOS commands are grouped into 5 categories in this appendix:

Housekeeping commands
INIT RENAME
CATALOG DELETE
SAVE LOCK
LOAD
RUN

Access Commands
FP
INT

UNLOCK

PRll
INll

Seguential Text File Commands
OPEN APPEND
CLOSE POSITION
READ
WRITE

EXEC

Random-Access Text File Commands
OPEN READ
CLOSE WRITE

Machine Language File Commands
BSAVE
BLOAD
BRUN

VERIFY
MON
NO MON
MAXFILES

CHAIN

Procedures used in DOS (including chaining in Applesoft) are summarized in
Appendix G. The notation used in the summaries (and throughout the
manual) is described in the following section.

NOTATION
Syntax refers to the structure of a computer command. A simple notation
is used to describe the syntax of each DOS command.

Items in square brackets, [and] , are optional. These items are
sometimes called parameters. Not all commands permit all parameters, but
those parameters that are permitted in a given command may appear in any
order, unless otherwise noted.

If a command uses a file name, the file name must come immediately after
the command word itself: the first item following the command will be
treated as a file name. The file name must be separated by a comma from
any parameter that follows.

Curly brackets may be used to indicate when a certain key should be
pressed:

{CTRL} hold down the key marked "CTRL" while another key is typed.
{CTRL}D means hold down the CTRL key while you type the
letter D. Sometimes another notation is used: CTRL-D means
the same as {CTRL}D.

148

{RETURN} press the key marked "RETURN". The {RETURN} required
after ever y command is not shown .

{RESET} press the key marked "RESET".

{ESC} press the key marked "ESC".

CAPITAL letters and commas must be typed as shown, lower case letters
stand for items that you must supply.

f file name. This is from one to 30 characters. Any typeable
character except the comma may appear in a file name. The
first character must be a letter of the alphabet . For more
details, see the next section.
Examples: CHESS

RECIPE
SUM OF SQUARES
NEW45
HOW- ABOUT-THIS

g another file name.
Example: SEPARATOR WITH LOW VELOCITY

s slot number. s specifies the Apple II slot in which the
disk controller card has been placed (usually slot 6).
s initially defaults to the slot from which DOS was booted.
It subsequently defaults to the last value specified for this
parameter . s must be in the range 1 through 7.
Examples: 7

2

If s refers to a slot which does not contain a disk controller
card, the system may stop and a program in memory may even
be lost. See I/O ERROR, in Appendix B, for more details.

v volume number of a diskette. v initially defaults to the
volume number of the diskette from which the system was booted.
It subsequently defaults to the latest value specified for
this parameter, or implicitly specified by a CATALOG command .
v must be in the range 0 through 254.
Example: 101
Note: A diskette's volume number may not be 0. In a DOS

command, specifying a volume number of 0 or simply V
with no number is a "wild card" and tells the DOS to
determine and use the volume number on the diskette.

d drive number (either 1 or 2). d initially defaults to one.
It subsequently defaults to the latest value specified for
this parameter.
Example: 2

149

p position number. Used with the R parameter in the POSITION
and EXEC commands for sequential text files. p specifies
a field whose position in the file is p fields ahead of the
current file position. p defaults to 0, which does not move
the file-position pointer in the file. Note: EXEC always sets
the pointer to the start of the named file, so p is always
relative to 0 when used with EXEC. See command summaries later
in this Appendix. p must be in the range 0 through 32767.

r record number. Used with the R parameter in the READ and
WRITE commands for random-access text files. r defaults
to 0 after OPEN. Thereafter, it defaults to the last record
S?ecified. r points to an absolute record within a random­
access file. r must be in the range 0 through 32767.

a address in RAM. The a parameter is required with the BSAVE
command. a specifies the starting Apple memory address for
BSAVEing or BLOADing binary information. If BLOAD does not
specify an a parameter, then the value of a defaults to
that used when the binary file was BSAVEd. a must be in
the range 0 through 65535.

b byte number. b defaults to 0. In a sequential file, b
points to an absolute byte within the file. In a random-access
file, b points to an absolute byte within the record pointed
to by r • b must be in the range 0 to 32767. For most
applications b is in the range 0 through the last byte in
the current sequential file or the last byte in the current
random-access record.

length specifier. j defaults to 1. When used in the OPEN
command with random-access files, j is required and specifies
the number of bytes that will constitute a record in a random-
access file. When used with the BSAVE command, is required
and specifies the number of bytes of Apple memory, starting at
address a , whose contents are to be stored on diskette.
must be in the range 0 through 32767.

As an example of this notation, the DOS command that is notated
INIT f [,Vv] [,Ss] [,Dd]
can be interpreted as
INIT HELLO, Vl7, D2
by the following process. The keyword "INIT" is in upper case, and must
be typed exactly as shown. In the syntax description, "f" is lower case
and stands for a file name -- it is replaced by the legitimate file name
"HELLO" in this example. The ",Vl7" is optional. "V" stands for
"volume"; 17 was chosen arbitrarily as a volume number for this example.
The notation ",Ss" is optional and omitted. The notation ",Dd" becomes ,
D2 in this example, indicating that disk drive number 2 is to be used.

Any numerical constant in a DOS command can be entered in hexadecimal
notation by preceeding the hexadecimal digits with a dollar sign.

150

FILENAMES

File names may be up to
The name cannot contain
terminate the command.
in a name are ignored.

~

30 characters long, and must begin with
a comma, a CTRL-M or a RETURN, which is
Spaces that precede the first non-space
All name characters beyond the 30th are

a letter.
used to
character
ignored.

When typing file names, the use of special keys such as ESC, the
left-arrow and right-arrow keys, and certain keys typed with the CTRL key
("control" characters CTRL-C, CTRL-H) may have unexpected effects.

If a file name contains control characters, you won't see them printed,
but they must be typed to use or delete the file.

The following Applesoft program can be used to find any hidden characters
except CTRL-M (RETURN), ESC, CTRL-H (left arrow) and CTRL-U (right arrow).

10 t>ATA 201 .. :14:1 .. 240 .. 2:1 .. 20:1..· i36
20 DATA 240 .. :17 .. 20:1 .. :128 .. i44.· :i.3

30 DATA 2€1:1 .. :160.· :176.· 9.· 72 .. :1.32
40 DATA 53 .. 56 .. 2:3:3 .. 64.· 76.· 249
50 DATA 253 .. 76..: 240.: 253
60 FOR I = 768 TD 768 + 27
70 READ './: POKE L V: NEXT I

80 POKE 54.~ 0:
90 CALL :10€12

If you suspect you may have accidentally introduced a control character
into a file name, type this program, SAVE it, and RUN it. The Applesoft
prompt (]) will be displayed. Next type
CATALOG
and you'll get a list of all the files, with any control characters shown
as flashing characters. Control characters in program listings can also
be found this way. To re-instate normal printouts, type
PR/I 0

HOUSEKEEPING COMMANDS

INIT f [,Vv] [,Ss] [,Dd]

Example: INIT HELLO, Vl8

The parameter v assigns a volume number to the diskette being initialized.
Details on initializing diskettes are in Chapter 2 and Appendix G.

151

Ct\TALOG [,Ss] [,Dd]

Example: CATALOG

Displays on the screen the volume number and a list of all files on the
diskette in the specified or default drive. The default volume number is
changed to match that of the indicated diskette. If this command uses a
volume "parameter [,Vv] that parameter is ignored.

With each file is displayed an indicator of its file type and the number
of diskette sectors occupied by the file. The file types are:

I Integer BASIC program file, created by SAVE.
A Applesoft BASIC program file, created by SAVE.
T Text file, created by OPEN and filled by WRITE .
B Binary memory-image file, created by BSAVE.

An asterisk beside a file's type indicator shows that the file is LOCKed.

A maximum of 403 diskette sectors are available to the user. Each
diskette sector can store up to 256 bytes of information. The minimum
length of a file is 1 sector, for an empty text file . (Technically, that
1 sector is occupied by the empty track/sector list for the file.) Empty
Integer BASIC, Applesoft, and Machine Language files take 2 sectors . (1
for the track/sector list and 1 for the first program sector, whi ch
contains the program's length. See Appendix C for more details.)

If an individual file exceeds 255 sectors, the CATALOG display of that
file's length starts over a t 000. This does not affect use of the file,
but may give an erroneous impression of how full the diskette is.

SAVE f [,Ss] [,Dd] [,Vv]

Example : SAVE COLOR DEMOS, V56

If there is no file with the specified file name on the diskette in the
specified or default drive, a file is created on that diskette and the
current Integer BASIC or Applesoft program is stored under the given file
name. If the diskette contains a file with the specified file name, but
of a different language or file type, then the message
FILE TYPE MISMATCH
will be displayed.

If the chosen diskette already contains a file with the specified file
name, and in the same language, the original file's contents are lost and
the current BASIC program is saved in its place . No warning is given.

152

LOAD f [,Ss) [,Dd) [,Vv)

Example: LOAD DOW JONES, Vl9, Dl

Attempts to find Integer BASIC or Applesoft program file with name f on
the diskette in the specified or default drive. If the volume numbers
match and there is such a file, that program will be LOADed into the
computer. It can then be LISTed, or RUN, or SAVEd as with any program.
LOAD closes any open text files, changes the Apple to the correct language
for file f , and erases any ~rogram in memory before placing the new
program in the Apple.

If file f is an Applesoft BASIC program, and Applesoft is not already in
memory or available from the Applesoft firmware ROM card, the program
Applesoft will be LOADed and RUN from the specified drive automatically,
before file f is LOADed. If Applesoft is not on that diskette nor on
the firmware ROM card, the message
LANGUAGE NOT AVAILABLE
will be displayed.

The instruction LOAD, without any parameters, will LOAD a program from
cassette tape.

RUN f [,Ss) [,Dd) [, Vv)

Example: RUN ANNUITY, DZ

LOADs file f from the specified or default drive (see the previous
discussion), then also RUNs the program loaded. If just
RUN
is typed, the program in memory is RUN.

RENAME f, g [,Ss) [,Dd] [,Vv]

Example: RENAME SEPERATE, SEPARATE, S4, Dl, V0

Finds the file named f on the diskette in the specified or default
drive, and changes its name to g • The file's contents are not affected.
If file f was open, it is closed.

RENAME does not check to see whether the file name g is already in use, so
it is possible to use RENAME to put several files of the same name onto a
diskette -- a potentially confusing situation, at best.

Do not RENAME the greeting program that was created when the disk was
INITialized unless you've first changed the name using the UPDATE 3.2
program. Otherwise, DOS will continue to look for the old greeting
program name, each time you boot the system with this diskette in drive 1.

153

DELETE f [,Ss] [,Dd) [,Vv]

Example: DELETE TEST

Removes the file named f from the diskett e in the specified or default
drive . If f was open, this command closes it. See Appendix C for more
details of the deletion process.

If a file named f does not exist on the diskette, the message
FILE NOT FOUND
will result. To avoid this occurrence stopping your programs, fi rst OPEN
the file, then DELETE it.

LOCK f [,Ss] [,Dd) [,Vv]

Example: LOCK LOVE LETTERS, V31

This command allows you to make fi le f , on the diskett e i n the s pe cified
or defaul t drive, safe from acciden t a l deletion or change. A LOCKed file
is indicated in the CATALOG by an asterisk (*).

UNLOCK f [,Ss) [,Dd) [,Vv)

Example: UNLOCK RECIPES, V31, D2

If you change your mind, and want to alter or remove a LOCKed file named
f , on the diskette in the s pe c i fie d or defaul t drive , thi s command allows
such a change.

VERIFY f [,Ss) [,Dd) [, Vv)

Example: VERIFY SAM

Performs a check that the info rmation actually stored on the diskette in
file f is self-consistent. (Technically, this is what happens: When
the file is created -- with SAVE, BSAVE or WRITE -- DOS calculates a
checksum byte for the contents of each output buffer and then stores that
byte with the buffer's contents in a diskette sector. The VERIFY command
calculates a new checksum byte for the actual contents of each file
sector, and compares it with the checksum byte originally stored with that
sector.) If a file VERIFYs, no message is given; it's safe to assume the
information on the diskette has been stored correctly. If a file does not
VERIFY, the message
I/O ERROR
is presented. You may VERIFY any t ype of file.

154

MON [CJ [, IJ [,OJ

Examples: MON O
MON C, I, 0

All disk commands and all information sent between the computer and the
disk are normally not displa:ize.d. on the sere.en. This command allows you
to enable some or all of this display -- a helpful tool when debugging a
program. If C is specified then disk commands are displayed. If I
is specified, then information being sent from the disk to the Apple, as
Apple's input, will be displayed. If 0 is specified, then information
being sent to the disk from the Apple, as Apple's output, will be
displayed.

At least one of the three parameters must be present, or MON is ignored.
The parameters may appear in any order;-separated by commas. These

parameters appear only in the commands MON and NOMON.

Note: MON remains in effect until a NOMON command, a change of language
(FP or INT), a boot, or a restart (3D0G). Even RUNning a program won't
cancel a MON.

NOMON [CJ [, IJ [,OJ

Examples: NOMON C
NOMON I, C

The MON command enables you to display disk commands and/or information
sent between the computer and the disk: such information is not normally
displayed on the screen. The NOMON command allows you to disable some or
all of this display. The command
NOMON C, I, 0
returns the system to its usual, default state.

If C is specified then disk commands are not displayed. If I is
specified, then information being sent from the disk to the Apple, as
Apple's input, will not be displayed. If 0 is specified, then
information being sent to the disk from the Apple, as Apple's output,
will not be displayed.

At least one of the three parameters must be present, or NOMON is
ignored. The parameters may appear in any order, separated by commas.
These parameters appear only in the commands MON and NOMON.

MAXFILES n

Example: MAXFILES 6

n is an integer from 1 to 16 that specifies the number of files that can
be active at one time. When MAXFILES is executed, 595 bytes of memory
(called a file buffer) are reserved for each file. When you boot the
system, n defaults to 3, so that you will have 1785 bytes reserved for
file buffers and will be allowed a maximum of 3 files open simultaneously.

155

All DOS commands except PR#, IN# and MAXFILES require a file buffer. Thus
if you have MAXFILES 1, and one file is OPEN, an attempt to perform a DOS
command (such as CATALOG) will cause the message
NO BUFFERS AVAILABLE
to be displayed.

Use of MAXFILES moves HIMEM. This can erase Integer BASIC programs or
Applesoft strings. Use MAXFILES before LOADing and RUNning a program.
See the discussion in Chapters 5 and 7 if MAXFILES must be used from
within a program.

ACCESS COMMANDS

FP [,Ss] [,Dd] [,Vv]

Example: FP, D2

This command puts your system into Applesoft BASIC. Any Integer BASIC or
Applesoft program in memory is lost. If your computer contains the
Applesoft firmware card, DOS uses that source for the language, regardless
of the switch position on the card . If your system does not contain the
Applesoft firmware card, DOS attempts to load and . run the program named
APPLESOFT on the diskette in the specified or default drive.

To place the APPLESOFT program onto a newly initialized diskette, first
LOAD the APPLESOFT program from the Master Diskette, then (without RUNning
or LISTing the file) SAVE APPLESOFT on an initialized diskette. You must
use the name APPLESOFT for this file.

Do not use RUN APPLESOFT to change languages . Everything looks fine at
first, but DOS has not properly initialized the language. To avoid the
resultant mess, always use FP.

INT

Example: INT

This command puts the Apple into Integer BASIC. Any Integer BASIC or
Applesoft program in memory is lost.

CTRL-D (also written {CTRL}D)

Example: 10 D$=CHR$(4)
20 PRINT D$;"WRITE CHESS"

156

Every character PRINTed out by the Apple is first examined by DOS before
it is sent on to the outside world. If the Apple PRINTs out a RETURN
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTRL-D, this is a message to DOS that subsequent
characters (until the next RETURN) are a DOS command. Most DOS commands
may be used from inside an Integer BASIC or Applesoft program. To do so,
PRINT a string consisting of CTRL-D followed by the desired DOS command.

The recommended way to do this is to first create a string D$ consisting
only of a CTRL-D, and then to use BASIC statements such as shown in the
example. Note the use of CHR$(4) to create D$ (this works only in
Applesoft, since the CHR$ function is not offerred in Integer BASIC).
Instead, CTRL-D could have been typed inside quotation marks to create D$,
but in this case no character is shown between the quotation marks.

Every character sent out by the Apple is first examined by DOS before it
is passed on to the outside world. If the Apple sends out a RETURN
character (most PRINT statements automatically end with a RETURN), and the
next character is a CTRL-D, this is a signal to DOS that subsequent
characters (until the next RETURN) are a DOS command. A DOS command from
a program must appear in a PRINT statement whose first ouput character is
CTRL-D and whose output is separated from preceding and from succeeding
printed output by RETURN's. For additional information, see "Use of DOS
from within a Program", in Appendix G.

PR/I s

Example: PR/I 6

Sends subsequent Apple output to the device controlled from slot # s ,
instead of to the TV screen. The command
PR/,I 0
returns output to the TV screen. If the command is used from inside
programs, it must appear as a PRINTed DOS command, as shown below:
10 D$="": REM CTRL-D
20 PRINT D$; "PR/I l"
If no device controller card is installed in slot # s , the system may
"hang" and you'll have to press the RESET key to recover

IN/I s

Example: INll 6

Takes subsequent Apple input from the device controlled from slot # s ,
instead of from the Apple keyboard. The command
IN/I 0
resets the normal keyboard input. If the command is used from inside
programs, it must appear in a PRINTed DOS command, as shown below:
10 D$="": REM CTRL-D
20 PRINT D$; "IN/I l"
If no device controller card is installed in slot # s , the system may
"hang" and you'll have to press the RESET key to recover •

157

CHAIN f [,Ss) [,Dd] [,Vv]

Example: CHAIN PART TWO, Dl, S7, V0

Used from within an Integer BASIC program, it loads and runs the Integer
BASIC program named f on the diskette in the specified or default drive,
but does not clear the values of ?ny variables. This means that program

f can operate on the results of the previous program, and can leave data
for any following program. You cannot CHAIN Applesof t programs using this
command: see the special procedure for Applesoft programs in Chapter 10 or
Appendix G.

SEQUENTIAL TEXT FILE COMMANDS

OPEN f [,Ss) [,Dd) [,Vv)

Example: OPEN SESAME, D2

Allocates a memory buff er of 595 bytes to the text file f , and prepares
the system to write or read from the beginning of the file. This
command is used with the WRITE and READ commands to create and retrieve
sequential text files.

If there is no file f on the diskette in the specified or default drive,
one is created. If a file named f is already OPEN, this command first
CLOSEs that file, before OPENing the specified file.

CLOSE [f]

Example: CLOSE WINDOW

If you were WRITEing, a CLOSE causes all remaining characters in the
output part of the file buff er to be sent to the diskette specified when
that file was OPENed. CLOSE f deallocates the buffer associated with the
sequential text file f • If CLOSE is used without a file name, all OPEN
files will be closed, with the exception of the EXEC file. (There can
only be one EXEC file OPEN at any time. When another is implicitly
OPENed, the existing EXEC file, if any, is automatically closed)

If a program is interrupted by a CTRL-C while a text file is OPEN, it's a
good idea to type
CLOSE
to keep any data from being lost.

Files that have been allocated by an OPEN statement must be CLOSEd.
Failure to CLOSE a file that was OPENed and written to (by a WRITE) can
result in loss of data.

158

WRITE f [,Bbl

Example: WRITE ADDRESS.DATA

After this command, PRINT statements send their output to the specified
file instead of to the Apple's TV screen. With the Byte parameter,
WRITEing begins at the b-th byte of the file (see Chapter 6, page 69).
WRITE is cancelled by the printing of any DOS command ,. or by an INPUT
statement. The null DOS command (simply PRINTing a CTRL-D) will do.
WRITE must be issued in def erred-execution mode.

After this command all Apple output characters that would normally be
displayed on the screen are sent to the diskette instead. This includes
INPUT question-mark prompts, error messages, and other unwanted
characters.

READ f [,Bbl

Example: READ SESAME

After this command, INPUT statements (and GET statements in Applesoft)
obtain their response characters from the specified sequential text file
instead of from the Apple's keyboard. With the Byte parameter, READing
begins at the b-th byte of the file (see Chapter 6, page 69).

INPUT causes characters to be READ from the sequential file one field at a
time. A field consists of from 1 to 32767 characters, ending with a
RETURN character. However, because of the limited capacities of strings
and input/output buffers, it is very difficult to store and retrieve
fields of more than 255 characters.

READ is cancelled by the printing of any DOS command. · A null DOS command
(just PRINT a CTRL-D) will cancel READ. The READ command must be used in
deferred-execution mode.

APPEND f [,Ssl [,Ddl [,Vvl

Example: APPEND MORE INFO

This command opens the specified text file, but places the
position-in-the-file pointer to the end of the file. After this
command, the next character written into the file will follow the last
sequentially written character presently in the file. An APPEND must be
followed by a WRITE to the file of the same name. (APPEND must not be
followed by OPEN, because OPEN will reset the position-in-the-file pointer
back to the file's beginning.)

159

POSITION f [,Rp]

Example: POSITION ADDRESS.DATA, R277

POSITION places the position-in-the-file pointer at the beginning of the
p-th field following the one you're in . A field is a sequence of
characters terminated by a RETURN. Subsequent READs or WRITEs will
proceed from that point in the file f.

POSITION deals with a relative, not an absolute, position, since you count
fields forward from where you are in the file when the POSITION is
executed.

POSITION actually scans forward through the contents of the file,
character by character, looking for the p-th RETURN character. It then
places the position-in-the-file pointer at the first byte following the
p-th RETURN character. If, in this search, it finds any byte in which no
character has ever been stored, the message
END OF DATA
is given . Normally, this occurs when the p-th field ahead of the current
posltion in the file is beyond the file's last entry.

EXEC f [,Rp] [,Ss] [,Dd] [,Vv]

Example : EXEC UTILITY

Similar to RUN, except that f is a text (data) file containing BASIC and
DOS commands as they would be issued from the keyboard. This allows you
to set up files that can control the Apple, much as you would control the
Apple yourself.

There can only be one EXEC command in effect at a time . If the EXEC file
contains the immediate-execution command EXEC, the original EXEC file is
closed and the new EXEC .file is opened and executed. If EXEC has OPENed a
file, the command
CLOSE
will not CLOSE the file being EXEC' ed . When an EXEC file has completed
all its commands, it CLOSEs itself and stops . If a file being EXEC'ed
contains a command to RUN any program, EXEC waits patiently until the
program ends. Then the next command in the EXEC file is executed.

However, if a program is running while an EXEC file is open, any INPUT
statement in the program will take the next field from the EXEC file as
the response, ignoring the keyboard. Worse yet, if that response is an
iimnediate-execution DOS command, the command will be executed before the
program continues .

If you type CTRL-C to stop an Applesoft ·program that is running while an
EXEC file is still open, the remaining commands in the EXEC file will
usually not be executed.

160

If you specify the value of the R parameter, a position-in-the-file
pointer is placed at the beginning of the p-th field in the file, and EXEC
will start executing from this point in the file.

As with POSITION, the R parameter used with EXEC should be thought of as
the Relative-field position parameter. However, unlike POSITION, EXEC
always counts fields from the beginning of your file, so p is always
relative to 0. The other parameters work as usual.

If you specify the value of the R parameter beyond the end of the file
you' 11 get an
END OF DATA
message.

RANDOM-ACCESS TEXT FILE COMMANDS

OPEN f, Lj [,Ss) [,Dd) [,Vv)

Example: OPEN SESAME, L2

OPEN allocates a 595-byt file buffer to the random-access text file f ,
and sets the record length to the number of bytes specified by j • The
number j must be in the range 1 to 32767; j defaults to 1.

OPEN is used with the READ and WRITE commands to create and retrieve
random-access text files. Note that the L (Length) parameter is not
optional: by definition, you must specify the record length of a
random-access text file. Each time you use a particular random-access
text file, you must OPEN the file with the same L parameter value. DOS
then uses that value to calculate the starting position of any specified
record.

If there is no file f, one is created. ·

CLOSE [f)

Example: CLOSE BOOK

If you were WRITEing, a CLOSE causes all remaining characters in the
output part of the file buff er to be sent to the diskette in the drive
that was specified when the file was OPENed. CLOSE de-allocates the
buffer associated with the random-access text file f • If CLOSE is used
without a file name, all OPEN files will be closed, with the exception of
an EXEC file, if any.

If a program is interrupted by a CTRL-C while a text file is OPEN, it's a
good idea to type
CLOSE
to keep from losing data.

161

~
Files that have been allocated by an OPEN statement must be CLOSEd.
Failure to CLOSE a file that was OPENed and written to (by a WRITE) can
result in loss of data.

WRITE f [, Rr] [, Bb]

Example: WRITE ADDRESS.DATA, R3

After this statement, PRINT statements send their output to the specified
file instead of to the Apple's TV screen. WRITE is cancelled by the
printing of any DOS command, or by an INPUT command. The null DOS command
(simply PRINTing a CTRL-D) will stop a WRITE with a minimum of effort.
WRITE can be used only in deferred-execution PRINT statements.

The R (Record) parameter causes the WRITE to begin at the first byte of
the r-th record, where each record contains the number of bytes, j ,
specified by the L parameter giv en with OPEN. r defaults to 0. If
the B parameter is specified, the WRITE will begin at the b-th byte of
the r-th record in the file.

After the WRITE statement, all Apple output characters that would
normally be displayed on th~creen are sent to the diskette instead.
This includes INPUT question-mark prompts, error messages, and other
unwanted characters.

READ f [,Rr] [,Bbl

Example: READ SESAME,R3,B30

After this statement, INPUT statements (and GET statements in Applesoft)
obtain their response characters from the specified random-access text
file instead of from the Apple's keyboard. INPUT causes characters to be
READ from the random-access file's current record, one field at a time.

A field can be from 1 to 32767 characters, ending with a RETURN character.
However, no record should be more than j characters in length, where
is the record length specified when the file was OPENed.

The R (Record) parameter causes the READ to begin at the first byte of the
r-th record, where each record contains the number of bytes, j ,
specified by the L parameter given with OPEN. r defaults to 0. If
the B parameter is specified, the READ will begin at the b-th byte of
the r-th record in the file.

READ is cancelled by the printing of any DOS command. A null DOS command
(just PRINT a CTRL-D) will cancel READ.

162

MACHINE-LANGUAGE FILE COMMANDS

BSAVE f, Aa, Lj [,Ss) [,Dd) [,Vv)

Examples: BSAVE PICTURE, Al6384, 18192
BSAVE PICTURE, A$4000, 1$2000

Creates a file named f , and stores the contents of a segment of the
APPLE II's memory. The segment is specified by the starting address a ,
and the number of bytes to be stored j · .

The examples shown above store a high-resolution picture, from the second
high-resolution picture area. They are operationally identical: the
second example just uses hexadecimal notation for the parameters.

BLOAD f [,Aa) [,Ss) [,Dd) [,Vv)

Examples: BLOAD PICTURE, A8192
BLOAD PICTURE, A$2000

If a is not specified, then BLOAD places the specified file in Apple's
memory beginning at the starting location of the memory area that was
originally BSAVEd. If a is specified, then the data is placed in
Apple's memory beginning at address a Note that a machine-language
program may no longer be executable if so moved.

Assume that a a high-resolution graphics picture has been BSAVEd on a
diskette under the file name PICTURE. Then the first example shown above
would place the picture into the first high-resolution picture area, which
starts at memory location 8192 (decimal). The second example is
equivalent: the address is shown in hexadecimal, as indicated by the "$"
before the 2000.

Either example would clobber any version of Applesoft that is not in
firmware.

BRUN f [,Aa) [,Ss) [,Dd) [,Vv)

Example: BRUN SUPER, A$C0A, V75

BLOADs the file f into Apple's memory beginning at location a • If the
A parameter is omitted, the file is BLOADed starting at the same

location from which it was BSAVEd. Once BLOADed, the file (which should
be a machine-language program) is started by a machine-language jump (JMP)
to location a •

163

164

This appendix cont ains sul!DDar ies of the main procedures used in DOS. On
the preceding page these are listed with the page numbers on which they
appear.

BOOTING DOS
Replace "s" by t he slot number in which the disk con t roller is located .

Prompt To boot DOS,
Character Language type

> Integer BASIC PR/ls or !Niis
Applesof t PR/ls or IN/ls

* Monitor s{CTRL}K or s{CTRL}P

INITIALIZING A DISKETTE
To INITialize a slave (memory dependent) diskette :
1) Boot DOS
2) Insert a blank diskette into the disk drive
3) Type in a greeting program, e . g.

10 PRINT "32K SLAVE DISKETTE INITIALIZED 5 MAY 80 "
20 END

4) Assuming you choose to name the greeting program "HELLO",
type the col!DDand
!NIT HELLO

5) After the IN USE light on the disk drive goes out, remove
the diskette and label it .

To create a master (memory independent) diskette, see the instructions in
Chapter 5 for use of the UPDATE 3.2 program.

RECOVERING FROM ACCIDENTAL RESETS
I f DOS has been booted and then the RESET key is accidentally pressed,
type
3D0G
(that's the numeral zero after the D) to get back into the BASIC you left
with your program intact .

USE OF DOS FROM WITHIN A PROGRAM
DOS commands may be issued from within a program by PRINTing CTRL-D then
the command. First create a string D$ which consists only of CTRL-D .

In Applesoft, D$ may be created by the command
D$ = CHR$(4)
since CTRL- D is the character whose ASCII code is 4.

166

In either BASIC, D$ may be defined by typing
D$; "
then holding down the CTRL key while typing the letter D, and then typing
the closing quote. Control characters such as CTRL-D aren't displayed, so
what you'll see is
D$; " "

This Applesoft program displays the CATALOG when RUN:

5 REM GREETING PROGRAM

1£1 D$ = CHR:t (4): REM CTRL-D

2f; PRINT D$.; "CATALOG"
Only one DOS command may be contained in a single PRINT statement . The
PRINT statement's quoted contents must begin with a CTRL-D and end with
the DOS command. The CTRL- D must be preceded by a RETURN (sent
automatically at the end of most PRINT statements) .

These commands should only be used in deferred- execution mode (from within
a program), appearing after CTRL-D in a PRINT statement:
OPEN APPEND READ llRITE POSITION

The commands INIT and MAXFILES are best used only in immediate-execution
mode (not from within a program).

Other DOS commands may be used either in immediate-execution mode, or from
within a program where they appear after a CTRL- D in a PRINT statement .

CREATING A TURNKEY SYSTEM
To make a diskette that runs a certain program each time the diskette is
booted -- in the example we will use the program COLOR DEMO - - use the
following procedure:
1) INITialize a blank diskette, using the name HELLO for the

greeting program .
2) Place a disk containing the COLOR DEMOS program in drive,

and type
RUN COLOR DEMOS
Once you're satisfied the program RUNs correctly, return
to BASIC .

3) Put the newly INITialized diskette into your drive and type
SAVE HELLO
to replace the old greeting program by the COLOR DEMOS
program.

CREATING AND RETRIEVING SEQUENTIAL TEXT FILES
When creating a sequential text file, an OPEN must precede a WRITE; once a
WRITE is executed, any subsequent PRINT commands send all characters to
the diskette . CLOSE the file when you're done. A WRITE command is
cancelled by an INPUT or the use of any DOS command in a PRINT statement
- - even just PRINTing CTRL- D will do.

167

This Applesof t program creates a sequential text file named SAMPLE whose
first thirteen fields contain three strings and the integers l through 10:

5 REM MAKE SAMPLE

:1.€1 D$ = CHR$ (4): REM CTRL-D

20 PR I NT D$.; "OPEN SAMPLE"

3:0 PRINT D$.; " DELETE SAMPLE"

40 PRINT D$.• "OPEN SAMPLE"

50 PRINT 0$.• "J..JRITE SAMPLE"

60 PRINT "HI HO ": PRINT "HI HO"

70 PRINT "OFF TO THE DISK J..JE GO"

80 FOR J = :1 TO :10

90 PRINT ~T: ND;T .J
110 PR I NT D$.• u CLOSE SAMPLE"

If you OPEN a file that already exists and then WRITE to it, you will
overwrite part of the original file.

This Applesoft program retrieves the file SAMPLE described above, one
field at a time . If you wish to see what is being READ from the disk, the
command
MON I
will cause input from the disk to be displayed.

5 REM RETRIEVE SAMPLE
10 D$ == CHR$ (4): REM CHR$(4)

IS CTRL-D

20 PF'.INT D$; "OPEN SAMPLE"

3:0 PRINT [)$_; 11 READ SAMPLE"

40 INPUT A$.8$,C$

50 FOR I :1 TO :10
6f1 INPUT w
70 NEXT I

80 PRINT [)$_; 11 CLOSE SAMPLE"

An OPEN must precede a READ. Once a READ is executed, any subsequent
INPUT statements (in Applesoft, GETs also) obtain their response
characters from the diskette instead of from the Apple's keyboard. CLOSE
the file when you're done .

A READ is cancelled by PRINTing CTRL-D, whether or not it's followed by a
DOS command.

168

ADDING DATA TO A SEQUENTIAL TEXT FILE
This Applesoft program adds the two strings "TEST l" and "AND NOW FOR TEST
2" to the end of a sequential text file called SAMPLE. Each string is in
an additional field of the file.

5 REM APPEND SAMPLE
10 D$ = CHR$ (4): REM CTRL- D
20 PRINT D$; "APPEND SAMPLE"
3:0 PRINT [)$_; "J..JRITE SAMPLE"
4f1 PRINT "TEST 1."

50 PRINT "AND NOH FOR TEST 2"
60 PRINT D$; "CLOSE SAMPLE"

CONTROLLING THE APPLE VIA A SEQUENTIAL TEXT FILE
When RUN, this Applesoft program creates a text file named DOIT containing
the commands
LIST 20,50
RUN HELLO
CATALOG

5 REM MAKE DOIT
10 D$ = CHR$ (4): REM CTRL-D
20 PRINT D$.; "OPEN [:.OIT"
30 PRINT D$; "HR I TE DOIT"
40 PRINT "LIST 20> 50 °
50 PRINT HF..-UN HELLO "
60 PRINT 11 CATALOG 0

70 PRINT !)$; "CLOSE DOIT"

Once the text file DOIT is created, the command
EXEC DOIT
will cause the commands in the file DOIT to be executed one by one, just
as if they'd been typed in from the keyboard.

169

CREATING AND RETRIEVING RANDOM-ACCESS TEXT FILES
This Applesoft program creates a random-access text file named RA-FILE,
whose records are each 3(.l bytes long. Then it WRITEs the string "NAME
ADDRESS" followed by the record number, into records 12 through 15 of the
file. In lines 7(.l and 8(.l, record number 13 is changed to contain the
string "DOS VERSION 3 . 2".

5 REM MAKE RA-FILE

10 D$ = CHR$ (4): REM CTRL-D

20 PRINT D$; "OPEN RA-FILE"

30 PRINT D$; "DELETE RA-FILE"
40 PRINT D$_; "OPEN RA-FILE.. LJ:0"

50 FOR I = 12 TO :15
60 PRINT D$; "WRITE RA-FILE.. R"_; I

70 PRINT "NAME ADDRESS "_; I

80 NEXT I
90 PRINT D$; "l.JRITE RA-FILE.· R1J:"

100 PRINT "DOS VERSION 3. 2"

110 PRINT D$_; "CLOSE RA-FILE"

This Applesoft program READS records 12 through 15 of the random-access
text file RA-FILE. Note that you must specify each record before READing
it in line 4(.l. Line 6(,l examines the three leftmost characters of the
input string A$, taken from each record. If those three characters are
"DOS", the message "RECORD r WAS CHANGED." is PRINTed, and the search
continues.

5 REM RETRIEVE RA-FILE
10 D$ = CHR$ (4): REM CTRL-D

2€1 PRINT D$; "OPEN RA-FILE.· L30"

30 FOR J = 12 TO 15
40 PRINT D$; "READ RA-FILE.· R"; ~T

50 INPUT A$

60 IF LEFT$ O::A$.. J:) = "DOS" THEN

PRINT "RECORD ".; ~T;" t·JAS CHA

NGED."

70 NE>ff J
80 PRINT [>$; "CLOSE RA-FILE"

170

COPYING A TEXT FILE
Mov ing a BASIC or a binary program file to another diskette is no problem:
just LOAD or BLOAD the file's contents into the Apple, and then SAVE or
BSAVE those contents back onto the other diskette. However, there is no
such simple way to move a text file onto another diskette (aside from
COPYing the entire diskette). In general, a program must be written for
the specific text file to be moved, which does the following:

1. READs each field of the existing text file into an
Applesoft string array.

2. WRITES each element of the string array into a field
of the new text file on the other diskette.

For instance, the previous Applesoft program RETRIEVE RA-FILt can easily
be modified to do step 1. Just add these two lines:
7 DIM A$(15)
50 INPUT A$ (J)
And that modified program can easily be modified to do step 2: just change
READ (line 40) into WRITE and change INPUT (line 50) into PRINT. You
might also wish to delete line 60, to avoid the PRINTing of a second field
into record 13.

CHAINING IN APPLESOFT
To RUN a series of Applesoft programs
variables and arrays

without erasing earlier values of

your drive and 1) Place the System Master diskette in
BLOAD CHAIN, A2056 (BLOAD CHAIN, Al2296

in diskette Applesoft)
which will have the chained 2) Place in the drive the diske tte

programs and use the command
BSAVE CHAIN, A2056, L456 (BSAVE CHAIN, Al2296, L456

in diskette Applesoft)
to put the machine language CHAIN program onto the diskette.

3) Suppose you wish program PART ONE to chain to the program
PART TWO. First, make sure the binary file CHAIN is on the
same diskette with the program PART TWO (see steps 1 and 2,
above). Then simply insert these two
lines as the last two lines to be executed in the PART ONE program:
PRINT CHR$(4); "BLOAD CHAIN,A520"
CALL 520"PART TWO"

No space or other character may be between the 0 and the "
in the CALL command.

171

172

GENERAL INDEX

Also see the Program Index and the Message Index at the end of this
section, on page 178. Inside the manual's back cover is the Command
Summary Index and the Procedure Summary Index.

-A-
a: see A (address) parameter
A-register 94-95
A (address) parameter 92, 150

with BLOAD 93, 163
with BRUN 93, 163
with BSAVE 92, 163

absolute byte parameter 69-70
125

absolute-field position
(R) parameter 79

address field 94
address (A) parameter 92, 150
analog board schematics 146
APPEND 66-67, 159
Apple II BASIC Programming Manual

10
Applesoft BASIC 28-31, 156

booting from 11
firmware ROM card 107
on diskette (RAM) 107,171

Applesoft II BASIC
Reference Manual

APPLESOFT program

-B-

Programming
10, 48

29' 107

b: see B (byte) parameter
B (byte) parameter 69, 150

with READ 69-71, 89
with WRITE 69-71, 89

backing up 37-38
binary files 92
BLOAD 93, 163
booting 11-12, 166
BRUN 45, 93, 163
BSAVE 92,163
byte (B) parameter 69-71, 89, 150

-C-
C, control 18, 39
C (command) parameter

with MON 42, 155
with NOMON 42, 155

cable 2-4
CALL -151 29

174

CALL -868 43
cassette tape recorder 15, 25
CATALOG 16, 152
CHAIN 106, 158
chaining in Applesoft 106-107,

171
in Integer BASIC 106, 158

CHR$(4) 30, 166-167
CLOSE 48

random-access files 88, 161-162
sequential files 58-59, 158

command (C) parameter 42
control character 17, 30, 148 ,

151
controller card 2-5, 22
CONTACT 2
COPY program 38-40
copying

diskettes 38-40
programs 15-16
text files 171

CTRL (control) 11, 148
CTRL-C 18
CTRL-D 29-31, 156-157, 166-167
CTRL-K 11, 103
CTRL-P 11, 103

-D-
d: see D (drive) parameter
D$ 30, 166-167
D, control 29-31, 156-157,

166-167
D (drive) parameter 22-23, 149
data field 94
data file: see sequential and

random-access text files
debugging 42, 44, 154-155
default values 22
deferred-execution mode 29-31, 48
DELETE 18, 26, 134, 154
device characteristics table

94-98
disk drive

care 5-7
installation 2-4
multiple drives
troubleshooting

5, 22
12

diskette 5-7
CATALOG 16, 152
format 94, 124-137
INITializing 13-14, 18, 166
storage 124
volume number 23

DISK FULL 120, 134, 178
display options: see MON, NOMON
DOS (Disk Operating System)

command summaries 110-111,
148-164, inside back cover

commands from within a program
31, 166-167

entry points 144
I/O registers 101-103, 104
memory usage 140-142
messages 114-122
procedure summaries 165-171,

inside back cover
drive option: see drive parameter
drive (D) parameter 22
duplicating disks 38-40

-E-
END OF DATA 117, 178
entry points to DOS 144
erasing files 18, 26, 154
error codes 114-115
error messages 114-122, 178
ESC (escape) 11, 149
EXEC 74-79, 160-161, 169

-F-
field 51, 124
field (R) parameter

with EXEC 79, 160-161
with POSITION 67-69, 160

file 16
data file: · see sequential and

random-acc.ess text files
EXEC 75
machine language 92-93
names 16-17, 25, 151
random-access text file 82-89
sequential text file 49-71
text file 48

file buffer 43, 124
FILE LOCKED 120, 178
FILE NOT FOUND 118, 178
FILE TYPE MISMATCH 121, 178
floating point BASIC:

see Applesof t BASIC
~p 28-29, 156

175

-G-
GET with text files 51
greeting program 13-14

renaming 45

-H-
HELLO program 13
hexadecimal notation 24
HIMEM: 12, 141-142

,
Iio devices 100
I/O ERROR 119, 178
I (input) parameter 42
immediate-execution mode 31-48
IN/I 11, 100-102, 157
indices

command summaries:
inside back cover

general 174-177
message 178
procedure summaries:

inside back cover
program 178

INIT (INITialize) 13-14, 31, 151,
166

INPUT with text files 51
Input/Output control Block:

see IOB
input registers

DOS 101, 104
Monitor 101, 103

input (I) parameter 42
installing the DISK II 2-4
INT 28-29, 156
Integer BASIC 28-29, 156

booting from 11
interface circuit schematics 145
IN USE light 7, 18
IOB 94-98

-J-
j: see L (length) parameter
JMP (jump) 93

-K..;
kick: see booting

-L-
LANGUAGE NOT AVAILABLE 115, 178
L (length) parameter

with BSAVE 92, 150, 163
with OPEN 88, 126, 150, 161

length (L) parameter
of binary file 92, 150
of record 88, 126, 150

LOAD 15-16, 25-26, 153
LOCK 35, 154

-M-
machine-language files 92-93, 163
master diskettes 44-46
MAXFILES 31, 43-44, 78, 155-156
memory requirements 13, 140-142
memory usage and map 140-141
message index 178
MON 42-43, 50, 155
monitor 11, 18, 29, 166
Monitor I/O r~gisters 101-103,

105

-N-
NO BUFFERS AVAILABLE 121, 178
NOMON 42-43, 155
NOT DIRECT COMMAND 122, 178
notation 24, 148-150 '

-0-
0 (output) parameter

with MON 42
with NOMON 42

ONERR GOTO codes 114-122
OPEN 48

random-access files 88, 161
sequential files 58-59, 158

output registers
DOS 101, 104
Monitor 101, 103

overwriting 63-64, 69

.p.

p: see relative-field position
(R) parameter

P, control 11, 103

176

POSITION 66-69, 125, 136, 150,
160-161

PRll 11, 100-102, 157
PRINT (with CTRL-D) 29-31, 50
program index 178
PROGRAM TOO LARGE 29, 122, 178
prompt characters 11, 36

-Q-
quotation marks 30

-R-
R parameter

with EXEC 79, 150
with POSITION 67-69, 125, 150
with READ 67-69, 150
with WRITE 67-68, 150

random-access text file 82-89,
161-162

creating, retrieving 82-85, 170
differences from sequential 82
sample programs 82-87

RANGE ERROR 116, 178
READ

with random-access text files
88-89, 137, 162, 170

with sequential text files
49-71, 136, 159, 167-169

read or write a track
or sector (RWTS) 94-98

record 82-86, 126, 150
record number (R) parameter 82-86
relative-field position

(R) parameter 67-69
RENAME 17, 153
RESET 11, 18, 149, 166
RETURN 11, 12, 149
RETURN character 51
ribbon cable 2-4
RUN 25-26, 153
RWTS subroutine 94-98

-s-
s: see S (slot) parameter
S (slot) parameter 22, 149
SAVE 15, 25-26, 152
schematics 145-146
sector 16, 94-98, 124, 127-135

allocation order 135

sequential text file 49-71
creating and retrieving 49-71,

167-168
EXEC 76, 169
sample programs 49-71

slave diskettes 13, 44, 141
slots 3-4
slot (S) parameter 22, 149
syntax 24, 148-150
SYNTAX ERROR 120, 178
System Master diskette 10-14

-T-
text file 48-49, 171
text file, random-access:

see random-access text file
text file, sequential:

see sequential text file
TRACE 44
track allocation order 135
track bit map 124, 133-134
track/sector list 124, 128-129
tracks 94-98, 124
turnkey system 34-35, 167

-u-
UNLOCK 35, 154
unpacking 2
UPDATE 3.2 program 44-46

-V-
v: see V (volume) parameter
V (volume) parameter 23-24, 149
VERIFY 35-36, 154
VOLUME MISMATCH 118-119, 178
volume number:

see volume parameter
volume (V) parameter 23-24, 149
VTOC (volume table of contents)

132-133

-W-
WRITE

with random-access text files
88-.89, 126, 162

with sequential text files
49-71, 124-125, 159

write protecting 36-37
WRJTE PROTECTED 116-117, 178

-X- -Y- -Z-
Y-register 94-96

177

DOS MESSAGE INDEX

Appendix B, pages 114-122, gives the codes needed to use Applesoft's
ONERR GOTO command to create Applesoft error-handling routines for DOS
errors. Summaries tell when each message presented by DOS is likely
to occur. Each summary tells what to do when the message is received.

MESSAGE PAGES

DISK FULL 120
END OF DATA 53, 58, 67' 68, 70, 79' 86,

117-118, 160, 161
FILE LOCKED 35, 67, 120
FILE NOT FOUND 17' 18, 26, 36, 46, 59, 118, 154
FILE TYPE MISMATCH 35, 48, 121, 152
I/O ERROR 22, 26, 36, 119, 154
LANGUAGE NOT AVAILABLE 28, 115' 153
NO BUFFERS AVAILABLE 43, 121, 156
NOT DIRECT COMMAND 48, 122
PROGRAM TOO LARGE 29, 122
RANGE ERROR 92, 116
SYNTAX ERROR 10, 26., 28, 79, 92, 120
VOLUME MISMATCH 23, 118-119
WRITE PROTECTED 37, 116-117

PROGRAM INDEX
Of the programs listed below, CAPTURE and the two greeting programs are
discussed only in the manual. The remaining listed programs are also on
the System Master diskette. This list does not include every program on
the System Master diskette, nor every program discussed in the manual.

PROGRAM

Greeting (HELLO) program
Another greeting program
COLOR DEMO
ANIMALS
COPY
UPDATE 3.2
MAKE TEXT
RETRIEVE TEXT
EXEC DEMO
CAPTURE
RANDOM and APPLE PROMS
CHAIN

DESCRIPTION

RUNs when disk is booted
shows CATALOG when disk is booted
displays Apple colors on color TV
builds a guessing-game
uses 2 drives to copy diskettes
converts slave diskette to master
creates a sequential text file
retrieves a sequential text file
demonstrates use of EXEC command
captures a program as a text file
shows use of random-access file
allows chaining in Applesoft

178

13-14
29-30
34-35

37
38-40
44-46
61-63
65-66
74-75
76-77
86-88

106-107

INDEX TO DOS COMMAND SUMMARIES

Command Page Command Page

APPEND 159 MAX.FILES 155
BLOAD 163 MON 155
BRUN 163 NOMON 155
BSAVE 163 OPEN 158 (sequential files)
CATALOG 152 161 (random- access files)
CHAIN 158 POSITION 160
CLOSE 158 (sequential files) PRll 157

161 (random-access files) READ 159 (sequential files)
CTRL-D 156 162 (random-access files)
DELETE 154 RENAME 153
EXEC 160 RUN 153
FP 156 SAVE 152
INll 157 UNLOCK 154
INIT 151 VERIFY 154
INT 156 WRITE 159 (sequential files)
LOAD 153 162 (random- access files)
LOCK 154

INDEX TO DOS PROCEDURE SUMMARIES

Procedure Page

Booting DOS 166
INITializing a Diskette 166
Recovering from Accidental RESETs 166
Use of DOS from within a Program 166
Creating a Turnkey System 167
Creating and Retrieving Sequential Text Files 167
Adding Data to a Sequential Text File 169
Controlling the Apple via a Sequential Text File 169
Creating and Retrieving Random- Access Text Files 170
Copying a Text File onto Another Diskette 171
Chaining in Applesoft 171
Converting Machine- Language Programs to BASIC 77
Setting MAX.FILES within an Integer BASIC Program 78

.pplcz computczr inc:
10260 Bandley Drive

Cupertino. California 95014
f 408 J 996-1010

	Apple DOS 3.2 Disk Operating System Reference Manual
	Cover Page
	Table of Contents
	Preface
	Chapter 1: Installation & Handling
	Unpacking
	Connecting the Cable
	Installing the Controller
	Installing Multiple Disk Drives
	Care of the Disk II & Diskettes
	Inserting & Removing Diskettes

	Chapter 2: Getting Started
	Background
	Special Keys
	Booting DOS
	If Booting Doesn't Work...
	Initializing New Diskettes
	LOADing & SAVE-ing with DOS
	CATALOG
	What's In a Name?
	RENAME-ing Files
	DELETE-ing Files
	Recovering from Accidental Resets

	Chapter 3: Exercising Options
	Drive, Slot & Volume Options
	Syntax
	INIT
	LOAD, RUN & SAVE
	DELETE

	A Scenario: Boot, Save, Run, Catalog & Delete
	Moving Between Languages: FP & INT
	Use of DOS From Within A Program

	Chapter 4: Playing Safe
	Creating a Turnkey System
	LOCK & UNLOCK
	VERIFY
	Write-Protecting a Disk
	Protecting Yourself Against Disaster
	Using the COPY Program

	Chapter 5: More "Housekeeping" Information
	Debugging: MON & NOMON
	MAXFILES
	TRACE
	Using the UPDATE Program

	Chapter 6: Using Sequential Files
	Text Files: An Introduction
	Sequential Text Files: Some Examples
	OPEN-ing & CLOSE-ing Sequential Files
	WRITE-ing Sequential Files
	READ-ing Sequential Files
	More on Sequential Files: APPEND & POSITION
	BYTE-ing Off More

	Chapter 7: Auto Apple
	Controlling the Apple Via a Text File: EXEC
	Creating an EXEC File
	Capturing Programs in a Text File
	Converting Machine-Language Routines to BASIC
	MAXFILES & Integer BASIC Programs
	EXEC-utive Session

	Chapter 8: Using Random-Access Files
	Random-Access Files: How They Work
	A Specific Record
	Multiple Records
	A Demonstration: The Random Program
	WRITE-ing & READ-ing Random-Access Text Files

	Chapter 9: Using Machine Language Files
	Machine Language Files
	BSAVE
	BLOAD
	BRUN
	The RWTS Subroutine

	Chapter 10: Input, Output & Chaining
	Selecting I/O Devices: IN#, PR# & Other Stuff
	Integer BASIC Chain
	Applesoft Chain

	Appendix A: Files Types Used with DOS Commands
	By DOS Command
	By File Type

	Appendix B: DOS Messages
	ONERR GOTO Codes
	Discussion

	Appendix C: Format of Diskette Information
	Overview of the Storage Process
	Writing into a Sequential Text File
	Writing into a Random-Access Text File
	How DOS Writes into Text Files: General Procedure
	Contents of File Sectors
	The Track/Sector List
	The Diskette Directory
	Volume Table of Contents
	Track Bit Map
	Track & Sector Allocation Order
	Retrieving Information from the Disk
	Reading from a Sequential File
	Reading from a Random-Access File

	Appendix D: Memory Usage
	Apple II Memory Maps:
	A. Memory Areas Over-Written When Booting DOS
	B. Memory Areas Used by DOS & Either4 BACIS

	HIMEM Value Set by Booting DOS

	Appendix E: DOS Entry Points & Schematics
	DOS Entry Points
	Circuit Schematic: Disk II Interface
	Circuit Schematic: Disk II Analog Board

	Appendix F: Summary of DOS Commands
	Notation
	Filenames
	Housekeeping Commands
	Access Commands
	Sequential Text File Commands
	Random-Access Text File Commands
	Machine Language File Commands

	Appendix G: Summary of DOS Procedures
	Booting DOS
	Initializing a Diskette
	Recovering from Accidental Resets
	Use of DOS From Within A Program
	Creating a Turnkey System
	Creating & Retrieving Sequential Text Files
	Adding Data to a Sequential Text File
	Controlling the Apple Via a Sequential Text File
	Creating & Retrieving Random-Access Files
	Copying a Text File
	Chaining in Applesoft BASIC

	Indices
	General Index
	DOS Message Index
	Program Index
	Index to DOS Command Summaries
	Index to DOS Procedure Summaries

	Back Cover

